Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion

Authors: Arkady Berenstein and Reyer Sjamaar
Journal: J. Amer. Math. Soc. 13 (2000), 433-466
MSC (2000): Primary 53D20; Secondary 14L24
Published electronically: January 31, 2000
MathSciNet review: 1750957
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a compact Lie group and a closed subgroup. Generalizing a result of Klyachko, we give a necessary and sufficient criterion for a coadjoint orbit of the subgroup to be contained in the projection of a given coadjoint orbit of the ambient group. The criterion is couched in terms of the ``relative'' Schubert calculus of the flag varieties of the two groups.

References [Enhancements On Off] (What's this?)

  • 1. S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817-836. MR 2000a:14066
  • 2. P. Belkale, Local systems on $\mathbb P^1-S$ for $S$ a finite set, preprint, University of Chicago, 1999.
  • 3. I. Bernstein, I. Gelfand, and S. Gelfand, Schubert cells and the cohomology of the spaces ${G/P}$, Uspehi Mat. Nauk 28 (1973), no. 3(171), 3-26 (Russian), English translation in Russian Math. Surveys 28 (1973), no. 3, 1-26. MR 55:2941
  • 4. N. Bourbaki, Groupes et algèbres de Lie, Éléments de mathématique, Masson, Paris, 1982. MR 84i:22001
  • 5. M. Brion, On the general faces of the moment polytope, Internat. Math. Res. Notices (1999), no. 4, 185-201. CMP 99:09
  • 6. M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88. MR 50:7174
  • 7. E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N. S. 30(72) (1952), 349-462 (Russian), English translation in American Mathematical Society Translations, Series 2, vol. 6, Amer. Math. Soc., Providence, R.I., 1957, pp. 111-244. MR 13:904c
  • 8. W. Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. MR 99f:05119
  • 9. -, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki, 50ème année, exposé no. 845 (Paris, 1997-98), Astérisque, vol. 252, Société Mathématique de France, Paris, 1998, pp. 255-269. CMP 99:13
  • 10. V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491-513. MR 83m:58037
  • 11. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977. MR 57:3116
  • 12. G. J. Heckman, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), no. 2, 333-356. MR 84d:22019
  • 13. U. Helmke and J. Rosenthal, Eigenvalue inequalities and Schubert calculus, Math. Nachr. 171 (1995), 207-225. MR 96b:15039
  • 14. F. Kirwan, Convexity properties of the moment mapping, III, Invent. Math. 77 (1984), no. 3, 547-552. MR 86b:58042b
  • 15. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419-445. MR 2000b:14054
  • 16. A. Knutson and T. Tao, The honeycomb model of $\mathrm{GL}_n(\mathbf C)$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055-1090. CMP 99:15
  • 17. M. Krämer, Über Untergruppen kompakter Liegruppen als Isotropiegruppen bei linearen Aktionen, Math. Z. 147 (1976), no. 3, 207-224. MR 53:8330
  • 18. P. Littelmann, A generalization of the Littlewood-Richardson rule, J. Algebra 130 (1990), no. 2, 328-368. MR 91f:22023
  • 19. P.-L. Montagard, Sur les faces du cône associé au pléthysme, Comm. Algebra 26 (1998), no. 7, 2321-2336. MR 99e:20057
  • 20. D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, vol. 34, Springer-Verlag, Berlin, 1994. MR 95m:14012
  • 21. P. Pragacz, Algebro-geometric applications of Schur ${S}$- and ${Q}$-polynomials, Topics in Invariant Theory (Paris, 1989-1990) (M.-P. Malliavin, ed.), Lecture Notes in Mathematics, vol. 1478, Springer-Verlag, Berlin, 1991, pp. 130-191. MR 93h:05170
  • 22. R. Sjamaar, Convexity properties of the moment mapping re-examined, Adv. Math. 138 (1998), no. 1, 46-91. MR 2000a:53148

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53D20, 14L24

Retrieve articles in all journals with MSC (2000): 53D20, 14L24

Additional Information

Arkady Berenstein
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853-4201
Address at time of publication: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138-2901

Reyer Sjamaar
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853-4201

Received by editor(s): April 30, 1999
Received by editor(s) in revised form: November 21, 1999
Published electronically: January 31, 2000
Additional Notes: The second author was partially supported by an Alfred P. Sloan Research Fellowship and by NSF Grant DMS-9703947
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society