Rigidity of critical circle mappings II
Authors:
Edson de Faria and Welington de Melo
Journal:
J. Amer. Math. Soc. 13 (2000), 343-370
MSC (2000):
Primary 37F25; Secondary 37E10, 30D05, 37F40
DOI:
https://doi.org/10.1090/S0894-0347-99-00324-0
Published electronically:
November 23, 1999
MathSciNet review:
1711394
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that any two real-analytic critical circle maps with cubic critical point and the same irrational rotation number of bounded type are conjugate for some
.
- [1] L. Ahlfors, Conformal invariants, McGraw-Hill, 1973. MR 50:10211
- [2] E. de Faria, Asymptotic rigidity of scaling ratios for critical circle mappings, Ergod. Th. & Dynam. Sys. 19 (1999), 995-1035.
- [3] E. de Faria and W. de Melo, Rigidity of critical circle mappings I, J. Eur. Math. Soc. 1.
- [4] J. Graczyk and G. Swiatek, Critical circle maps near bifurcation, Commun. Math. Phys. 176 (1996), 227-260. MR 96j:58053
- [5] M. Herman, Sur la conjugaison differentiable des difféomorphismes du cercle a des rotations, Publ. Math. IHES 49 (1979), 5-234. MR 81h:58039
- [6] -, Conjugaison quasi-simétrique des homéomorphismes du cercle a des rotations, Manuscript, 1988.
- [7]
L. Keen, Dynamics of holomorphic self-maps of
, Holomorphic Functions and Moduli I, Eds. D. Drasin et al., Springer-Verlag, New York, 1988. MR 90e:58075
- [8] M. Lyubich and M. Yampolsky, Dynamics of quadratic polynomials: complex bounds for real maps, Ann. Inst. Fourier (Grenoble) 47 (1997), 1219-1255. MR 98m:58113
- [9] C. McMullen, Complex dynamics and renormalization, Annals of Math. Studies 135 (1994). MR 96b:58097
- [10] -, Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies 142 (1996). MR 97f:57022
- [11] -, Self-similarity of Siegel disks and Hausdorff dimension of Julia sets, Acta Math. 180 (1998), 247-292. MR 99f:58172
- [12] W. de Melo and S. van Strien, One-dimensional Dynamics, Springer-Verlag, Berlin and New York, 1993. MR 95a:58035
- [13] D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, Mathematics into the Twenty-First Century, Amer. Math. Soc. Centennial Publication, vol.2, Amer. Math. Soc., Providence, RI, 1991. MR 93k:58194
- [14] G. Swiatek, Rational rotation numbers for maps of the circle, Commun. Math. Phys. 119 (1988), 109-128. MR 90h:58077
- [15] M. Yampolsky, Complex bounds for critical circle maps, Ergod. Th. & Dynam. Sys. 19 (1999), 227-257. CMP 99:09
- [16] J.-C. Yoccoz, Conjugaison analytique des difféomorphismes du cercle, Manuscript, 1989.
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 37F25, 37E10, 30D05, 37F40
Retrieve articles in all journals with MSC (2000): 37F25, 37E10, 30D05, 37F40
Additional Information
Edson de Faria
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP05508-900 São Paulo SP - Brasil
Email:
edson@ime.usp.br
Welington de Melo
Affiliation:
Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botânico, CEP22460-320 Rio de Janeiro RJ - Brasil
Email:
demelo@impa.br
DOI:
https://doi.org/10.1090/S0894-0347-99-00324-0
Keywords:
Holomorphic pairs,
complex bounds,
uniform twist,
rigidity
Received by editor(s):
November 9, 1998
Received by editor(s) in revised form:
September 20, 1999
Published electronically:
November 23, 1999
Additional Notes:
This work has been partially supported by the Pronex Project on Dynamical Systems, by FAPESP Grant 95/3187-4 and by CNPq Grant 30.1244/86-3.
Article copyright:
© Copyright 2000
American Mathematical Society