Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Linear algebraic groups and countable Borel equivalence relations


Authors: Scot Adams and Alexander S. Kechris
Journal: J. Amer. Math. Soc. 13 (2000), 909-943
MSC (2000): Primary 03E15; Secondary 37A20
DOI: https://doi.org/10.1090/S0894-0347-00-00341-6
Published electronically: June 23, 2000
MathSciNet review: 1775739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

If $R_i$ is an equivalence relation on a standard Borel space $B_i (i=1,2)$, then we say that $R_1$ is Borel reducible to $R_2$ if there is a Borel function $f: B_1\to B_2$ such that $(x,y)\in R_1 \Leftrightarrow (f(x),f(y))\in R_2$. An equivalence relation $R$ on a standard Borel space $B$ is Borel if its graph is a Borel subset of $B\times B$. It is countable if each of its equivalence classes is countable. We investigate the complexity of Borel reducibility of countable Borel equivalence relations on standard Borel spaces. We show that it is at least as complex as the relation of inclusion on the collection of Borel subsets of the real line. We also show that Borel reducibility is ${\boldsymbol\Sigma}^{\boldsymbol 1}_{\boldsymbol 2}$-complete. The proofs make use of the ergodic theory of linear algebraic groups, and more particularly the superrigidity theory of R. Zimmer.


References [Enhancements On Off] (What's this?)

  • 1. S. Adams, Indecomposability of treed equivalence relations, Israel J. Math., 86 (3), 362-380, 1988. MR 90m:28022
  • 2. S. Adams, Trees and amenable equivalence relations, Erg. Th. and Dyn. Syst., 10, 1-14, 1990. MR 91d:28041
  • 3. P. de la Harpe and A. Valette, La Propriété (T) de Kazhdan pour les Groupes Localement Compacts, Astérisque, 175, Soc. Math. de France, 1989. MR 90m:22001
  • 4. J. Dieudonné, Sur les Groupes Classiques, Hermann, Paris, 1973. MR 49:9094
  • 5. R. Dougherty, S. Jackson, and A.S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc., 341 (1), 193-225, 1994. MR 94c:03066
  • 6. E.G. Effros, Transformation groups and C$^*$-algebras, Ann. of Math., 81, 38-55, 1965. MR 30:5175
  • 7. J. Feldman, P. Hahn, and C.C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. in Math., 26, 186-230, 1979. MR 58:1121
  • 8. J. Feldman and C.C. Moore, Ergodic equivalence relations and von Neumann algebras, I, Trans. Amer. Math. Soc., 234, 289-324, 1977. MR 58:28261a
  • 9. H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symb. Logic, 54 (3), 894-914, 1989. MR 91f:03062
  • 10. L. Fuchs, Infinite Abelian Groups, Academic Press, 1970. MR 41:333
  • 11. S. Gao, Some applications of the Adams-Kechris technique, preprint, 2000.
  • 12. J. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc., 101, 124-138, 1961. MR 25:146
  • 13. V.V. Gorbatsevich, A.L. Onishchik, and E.B. Vinberg, Foundations of Lie Theory and Lie Transformation Groups, Springer, 1997. MR 99c:22009
  • 14. L. Harrington, A.S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc., 3 (4), 903-928, 1990. MR 91h:28023
  • 15. G. Hjorth, Around nonclassifiability for countable torsion-free abelian groups, preprint, 1998.
  • 16. G. Hjorth and A.S. Kechris, Borel equivalence relations and classifications of countable models, Ann. Pure and Appl. Logic, 82, 221-272, 1996. MR 99m:03073
  • 17. J.E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., 21, Springer-Verlag, 1975. MR 53:633
  • 18. S. Jackson, A.S. Kechris, and A. Louveau, Countable Borel equivalence relations, preprint, 2000.
  • 19. A.S. Kechris, The structure of Borel equivalence relations in Polish spaces, Set Theory of the Continuum, H. Judah, W. Just, and W.H. Woodin (eds.), MSRI Publications, Springer-Verlag, 26, 89-102, 1992. MR 94h:03093
  • 20. A.S. Kechris, Countable sections for locally compact group actions, Erg. Th. and Dyn. Syst., 12, 283-295, 1992. MR 94b:22003
  • 21. A.S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer-Verlag, 1995. MR 96e:03057
  • 22. A.S. Kechris, Actions of Polish groups and classification problems, preprint, 1998.
  • 23. A.S. Kechris, New directions in descriptive set theory, Bull. Symb. Logic, 5 (2), 161-174, 1999.
  • 24. A.S. Kechris, Descriptive dynamics, Descriptive Set Theory and Dynamical Systems, Ed. by M. Foreman, A.S. Kechris, A. Louveau, and B. Weiss, London Math. Society Lecture Note Series, 277, 231-258, Cambridge Univ. Press, 2000.
  • 25. A. Louveau and B. Velickovic, A note on Borel equivalence relations, Proc. Amer. Math. Soc., 120, 255-259, 1994. MR 94f:54076
  • 26. G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Erg. der Math. und Ihrer. Grenz., 17, Springer-Verlag, 1991. MR 92h:22021
  • 27. C.C. Moore, Ergodic theory and von Neumann algebras, Proc. Symp. Pure Math., Amer. Math. Soc., 38, 179-226, 1982. MR 84f:22013
  • 28. Y.N. Moschovakis, Descriptive Set Theory, North Holland, 1980. MR 82e:03002
  • 29. J.J. Rotman, An Introduction to the Theory of Groups, Grad. Texts in Math., 148, Springer-Verlag, 1995. MR 95m:20001
  • 30. K. Schmidt, Algebraic Ideas in Ergodic Theory, CBMS Regional Conference Series in Math., 76, Amer. Math Soc., 1990. MR 92k:28029
  • 31. J.-P. Serre, A Course in Arithmetic, Grad. Texts. in Math., 7, Springer-Verlag, 1973. MR 49:8956
  • 32. J. Silver, Counting the number of equivalence classes of Borel and co-analytic equivalence relations, Ann. Math. Logic, 18, 1-28, 1980. MR 81d:03051
  • 33. S. Thomas, Notes on TFA$_2$ groups, preprint, 1998.
  • 34. V.S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc., 109, 191-220, 1963. MR 28:3139
  • 35. R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, 1984. MR 86j:22014
  • 36. R. Zimmer, Groups generating transversals to semisimple Lie group actions, Israel J. Math., 73 (2), 151-159, 1991. MR 93e:22012

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 03E15, 37A20

Retrieve articles in all journals with MSC (2000): 03E15, 37A20


Additional Information

Scot Adams
Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: adams@math.umn.edu

Alexander S. Kechris
Affiliation: Department of Mathematics, Caltech, Pasadena, California 91125
Email: kechris@caltech.edu

DOI: https://doi.org/10.1090/S0894-0347-00-00341-6
Keywords: Borel equivalence relations, Borel reducibility, cocycles, superrigidity
Received by editor(s): March 27, 1999
Received by editor(s) in revised form: April 21, 2000
Published electronically: June 23, 2000
Additional Notes: The first author’s research was partially supported by NSF Grant DMS 9703480.
The second author’s research was partially supported by NSF Grant DMS 9619880 and a Visiting Miller Research Professorship at U.C. Berkeley.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society