Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Values of zeta functions at negative integers, Dedekind sums and toric geometry

Authors: Stavros Garoufalidis and James E. Pommersheim
Journal: J. Amer. Math. Soc. 14 (2001), 1-23
MSC (1991): Primary 11M06; Secondary 14M25, 11F20
Published electronically: September 18, 2000
MathSciNet review: 1800347
Full-text PDF

Abstract | References | Similar Articles | Additional Information


We study relations among special values of zeta functions, invariants of toric varieties, and generalized Dedekind sums. In particular, we use invariants arising in the Todd class of a toric variety to give a new explicit formula for the values of the zeta function of a real quadratic field at nonpositive integers. We also express these invariants in terms of the generalized Dedekind sums studied previously by several authors. The paper includes conceptual proofs of these relations and explicit computations of the various zeta values and Dedekind sums involved.

References [Enhancements On Off] (What's this?)

  • [AV] T. Apostol, T. Vu, Identities for sums of Dedekind type, J. Number Theory 14 (1982) 391-396. MR 83h:10054
  • [Ba] A. I. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994) no.4 769-779. MR 96c:52026
  • [BP] A. I. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New Perspectives in Mathematics, MSRI, 1999. CMP 2000:07
  • [Br] M. Brion, Points entier dans les polyèdres convexes, Ann. Scient. Éc. Norm. Sup. 21 (1988) no.4 653-663. MR 90d:52020
  • [BV1] M. Brion and M. Vergne, An equivariant Riemann-Roch theorem for simplicial toric varieties, J. Reine Angew. Math 482 (1997) 67-92. MR 98a:14067
  • [BV2] -, Lattice points in simple polytopes, Journal of AMS 10 (1997) 371-392. MR 98a:11132
  • [CS] S. Cappell, J. Shaneson, Genera of algebraic varieties and counting lattice points, Bull. Amer. Math. Soc. 30 (1994) 62-69. MR 94f:14018
  • [CN1] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inventiones Math. 51 (1979) 29-59. MR 80h:12009b
  • [CN2] -, Valeurs aux entiers négatifs des séries de Dirichlet associées a un polynôme I, Journal of Number Theory 14 (1982) 32-64. MR 83e:12012
  • [CN3] -, Valeurs aux entiers négatifs des séries de Dirichlet associées a un polynôme II, III, Amer. J. Math 106 (1984) 255-299 and 109 (1987) 71-89. MR 85b:11109; MR 88b:11056
  • [Da] V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978) 97-154. MR 80g:14001
  • [DR] R. Diaz, S. Robins, The Ehrhart polynomial of a lattice polytope, Annals of Math. 145 (1997) 503-518. MR 98e:11117a; MR 98e:11117b
  • [Fu] W. Fulton, Introduction to toric varieties, Annals of Math. Studies 131, Princeton, New Jersey, 1993. MR 94g:14028
  • [Gu] V. Guillemin, Riemann-Roch for toric orbifolds, J. Diff. Geom. 45 (1997) 53-73. MR 98a:58075
  • [Ha] U. Halbritter, Some new reciprocity formulas for generalized Dedekind sums, Results Math. 8 (1985) 21-46. MR 87a:11043
  • [Hs] D. Hayes, Brumer elements over a real quadratic base field, Exposition. Math. 8 no.2 (1990) 137-184. MR 92a:11142
  • [KK] J.M. Kantor, A.G. Khovanskii, Integral points in convex polyhedra, combinatorial Riemann-Roch and generalized MacLaurin formulae, IHES (1992) 932-937.
  • [KP] A.G. Khovanskii, A.V. Pukhlikov, A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes, St. Petersburg Math. J. 4 (1993) 789-912. MR 94c:14044
  • [Kl] H. Klingen, Über die Werke der Dedekindsche Zeta Funktion, Math. Ann. 145 (1962) 265-272.
  • [Li] S. Lichtenbaum, Talk at I.A.S., mimeographed notes 1971.
  • [Me] C. Meyer, Über die Berechnung der Klassenzahl abelscher Körper quadratischen Zahlkörpern, Akademie-Verlag Berlin, 1955. MR 19:531f
  • [Mo] R. Morelli, Pick's Theorem and the Todd class of a toric variety, Adv. Math. 100:2 (1993) 183-231. MR 94j:14048
  • [P1] J. E. Pommersheim, Toric varieties, lattice points and Dedekind sums, Math. Ann. 295 (1993) 1-24. MR 94c:14043
  • [P2] -, Products of cycles and the Todd class of a toric variety, Journal of AMS 9 (1996) no. 3, 813-826. MR 96j:14037
  • [P3] -, Barvinok's algorithm and the Todd class of a toric variety, J. Pure Appl. Alg. 117 & 118 (1997) 519-533. MR 98g:14067
  • [RG] H. Rademacher, E. Grosswald, Dedekind sums, Carus Math. Monographs, 16 Mathematical Association of America, Washington D.C., 1972. MR 50:9767
  • [Sc1] R. Sczech, Eisenstein cocycles for $GL_2(\mathbb Q)$ and values of $L$-functions in real quadratic fields, Comment. Math. Helvetici 67 (1992) 363-382. MR 93h:11047
  • [Sc2] -, Eisenstein group cocycles for $GL_n(\mathbb Q)$ and values of $L$-functions, Inventiones 113 (1993) 581-616. MR 94j:11049
  • [Sh1] T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at nonpositive integers, J. Fac. Sci. Univ. Tokyo, Sec. 1A, 23 (1976) 393-417. MR 55:266
  • [Sh2] -, On special values of zeta functions of totally real algebraic number fields, Proc. Intern. Congress of Mathematicians, Helsinki (1978) 591-597. MR 81e:12016
  • [Si1] C. L. Siegel, Bernoulische Polynome und Quadratische Zahlkörper, Nachr. Akad. Wiss. Göttingen Math. Physik. 3 (1970) 7-38. MR 38:2123
  • [Si2] -, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math. Physik. 3 (1970) 15-56. MR 44:2706
  • [So] D. Solomon, Algebraic properties of Shintani's generating functions: Dedekind sums and cocycles on $PGL_2(\mathbb Q)$, Compositio Math. 112 (1998) 333-362. MR 99g:11137
  • [St] G. Stevens, The Eisenstein measure and real quadratic fields, in the proceedings of the International Number Theory Conference (Université Laval, 1987), J.M. de Koninck and C. Levesque eds., de Gruyter, 1989. MR 90m:11077
  • [Za1] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973) 149-172. MR 50:9801
  • [Za2] -, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975) 153-182. MR 51:3123
  • [Za3] -, Nombres de classes et fractions continues, Soc. Math. France Asterisque 24-25 (1975) 81-97. MR 51:10293
  • [Za4] -, Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Soc. Math. France Asterisque 41-42 (1977) 135-151. MR 56:316

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11M06, 14M25, 11F20

Retrieve articles in all journals with MSC (1991): 11M06, 14M25, 11F20

Additional Information

Stavros Garoufalidis
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160

James E. Pommersheim
Affiliation: Department of Mathematics, Pomona College, 610 North College Ave., Claremont, California 91711

Keywords: Zeta functions, Dedekind sums, toric varieties
Received by editor(s): June 1, 1999
Received by editor(s) in revised form: May 24, 2000
Published electronically: September 18, 2000
Additional Notes: The authors were partially supported by NSF grants DMS-95-05105 and DMS-95-08972, respectively.
Dedicated: Dedicated to our teacher, W. Fulton
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society