Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

An Eulerian-Lagrangian approach for incompressible fluids: Local theory


Author: Peter Constantin
Journal: J. Amer. Math. Soc. 14 (2001), 263-278
MSC (2000): Primary 76B03, 37K65, 35Q30, 35L65
DOI: https://doi.org/10.1090/S0894-0347-00-00364-7
Published electronically: December 21, 2000
MathSciNet review: 1815212
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We study a formulation of the incompressible Euler equations in terms of the inverse Lagrangian map. In this formulation the equations become a first order advective nonlinear system of partial differential equations.


References [Enhancements On Off] (What's this?)

  • 1. A. Majda, Vorticity and the mathematical theory of incompressible flow, Comm. Pure Appl. Math. S39 (1986), 187-220. MR 87j:76041
  • 2. J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66. MR 85j:35154
  • 3. H. K. Moffatt, The degree of knotedness of tangled vortex lines, J. Fluid Mech. 35 (1969), 117-129.
  • 4. V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Ann. Rev. Fl. Mech. 24 (1992), 145-166. MR 93d:58020
  • 5. A. J. Chorin, Vorticity and Turbulence, Applied Mathematical Sciences 103, (1994), Springer-Verlag, New York. MR 95m:76043
  • 6. U. Frisch, Turbulence, Cambridge University Press, (1995), Cambridge. MR 98e:76002
  • 7. J. Serrin, Mathematical principles of classical fluid mechanics (S. Flugge, C. Truesdell, Eds.), Handbuch der Physik, 8 (1959), 125-263, p.169. MR 21:6836b
  • 8. M. E. Goldstein, Unsteady vortical and entropic distortion of potential flows round arbitrary obstacles, J. Fluid Mech. 89 (1978), 433-468.
  • 9. M. E. Goldstein, P. A. Durbin, The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream, J. Fluid Mech. 98 (1980), 473-508.
  • 10. J. C. R. Hunt, Vorticity and vortex dynamics in complex turbulent flows, Transactions of CSME 11 (1987), 21-35.
  • 11. G. A. Kuzmin, Ideal incompressible hydrodynamics in terms of the vortex momentum density, Phys. Lett. A 96 (1983), 88-90.
  • 12. V. I. Oseledets, On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism, Commun. Moscow Math. Soc. (1988), Russ. Math. Surveys 44 (1989), 210-211. MR 91e:58173
  • 13. T. F. Buttke, Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow, in Vortex flows and related numerical methods, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., J.T. Beale et al., Eds. 395 (1993), Kluwer (Dordrecht), 39-57. MR 94m:76093
  • 14. J. H. Maddocks, R. L. Pego, An unconstrained Hamiltonian formulation for incompressible fluid flow, Comm. Math. Phys. 170 (1995), 207-217. MR 96a:76085
  • 15. D. Ebin, J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), 102-163. MR 42:6865
  • 16. T. Kato, Non-stationary flows of viscous and ideal fluids in ${\mathbf R}^3$, J. Funct. Anal. 9 (1972), 296-309. MR 58:1753
  • 17. A. Bertozzi, P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), 19-28. MR 94b:35221
  • 18. P. Constantin, J. Wu, The inviscid limit for non-smooth vorticity, Indiana Univ. Math J. 45 (1996), 67-81. MR 97g:35129
  • 19. P. Constantin, Geometric and analytic studies in turbulences, in Trends and Perspectives in Appl. Math., L. Sirovich, ed., Appl. Math. Sciences 100, Springer-Verlag, (1994). MR 95f:76017
  • 20. P. Constantin, A. Majda, E. Tabak, Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar, Nonlinearity 7 (1994), 1495-1533. MR 95i:76107
  • 21. P. Constantin, C. Fefferman, A. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Commun. in PDE 21 (1996), 559-571. MR 97c:35154
  • 22. K. Ohkitani, M. Yamada, Inviscid and inviscid-limit behavior of a surface quasi-geostrophic flow, Phys. Fluids 9 (1997), 876 -882. MR 97m:76032
  • 23. D. Cordoba, On the geometry of solutions of the quasi-geostrophic active scalar and Euler equations, Proc. Nat. Acad. Sci. USA 94 (1997), 12769-12770.
  • 24. P. Constantin, Q. Nie, N. Schoerghofer, Nonsingular surface quasi-geostrophic flow, Phys. Lett. A 241 (27 April 1998), 168-172. MR 99a:76031
  • 25. P. Constantin, An Eulerian-Lagrangian approach to incompressible fluids, http://www. aimath.org/preprints/99/constantin.dvi

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 76B03, 37K65, 35Q30, 35L65

Retrieve articles in all journals with MSC (2000): 76B03, 37K65, 35Q30, 35L65


Additional Information

Peter Constantin
Affiliation: Department of Mathematics, The University of Chicago, Chicago, Illinois 60637-1546
Email: const@cs.uchicago.edu

DOI: https://doi.org/10.1090/S0894-0347-00-00364-7
Keywords: Euler equations, blow up
Received by editor(s): September 27, 1999
Published electronically: December 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society