Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Existence of blow-up solutions in the energy space for the critical generalized KdV equation

Author: Frank Merle
Journal: J. Amer. Math. Soc. 14 (2001), 555-578
MSC (2000): Primary 35B35, 35Q53
Published electronically: March 20, 2001
MathSciNet review: 1824989
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


For the critical generalized Korteweg-de Vries equation, we establish blow-up in finite or infinite time in $H^1(\mathbf R)$ for initial data with negative energy, close to a soliton up to scaling and translation.

References [Enhancements On Off] (What's this?)

  • 1. J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high order numerical schemes, Phil. Trans. Roy. Soc. London Ser. A. 351 (1995), 107-164. MR 96d:65141
  • 2. J.L. Bona, P.E. Souganidis and W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. Lond. 411 (1987), 395-412. MR 88m:35128
  • 3. J. Bourgain, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, 1,2 (Zurich, 1994), 31-44, Birkhäuser, Basel, 1995. MR 97f:35088
  • 4. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3 (1993), no. 3, 209-262. MR 95d:35160b
  • 5. T. Cazenave and P.L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561. MR 84i:81015
  • 6. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 80h:35043
  • 7. B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eq. 6 (1981), 883-901. MR 82h:35033
  • 8. J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20, 6 (1989), 1388-1425. MR 90i:35240
  • 9. M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal. 74 (1987), 160-197. MR 88g:35169
  • 10. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematical Supplementary Studies, Studies in Applied Math. 8 (1983), 93-128. MR 86f:35160
  • 11. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620. MR 94h:35229
  • 12. C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow-up solutions for the generalized KdV equation critical in $L^2$, Contemp. Math. 263 (2000), 131-156. CMP 2001:01
  • 13. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539 (1895), 422-443.
  • 14. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, CPAM 21 (1968), 467-490. MR 38:3620
  • 15. Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation, to appear in Geometrical and Functional Analysis.
  • 16. Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, Journal de Math. Pures et Appliquees 79 (2000), 339-425. CMP 2000:11
  • 17. Y. Martel and F. Merle, Asymptotic stability of solitons for the subcritical generalized Korteweg-de Vries equation, to appear in Archive for Rational Mechanics and Analysis.
  • 18. F. Merle, Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré 13 (1996), 553-565. MR 97f:35204
  • 19. F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians, (Berlin, 1998), Doc. Math. J. DMV. MR 99h:35200
  • 20. F. Merle and H. Zaag, A Liouville Theorem for a vector valued nonlinear heat equation and applications, Math. Ann. 316 (2000) 1, 103-137. CMP 2000:07
  • 21. R.L. Pego and M.I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), 305-349. MR 95h:35209
  • 22. M. Schechter, Spectra of partial differential operator, North Holland, 1986. MR 88h:35085
  • 23. A. Soffer and M.I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999), 9-74. MR 2000k:37119
  • 24. E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Oxford, Clarendon Press, 1946. MR 8:458d
  • 25. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. MR 84d:35140
  • 26. M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472-491. MR 86i:35130
  • 27. M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39 (1986), 51-68. MR 87f:35023
  • 28. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62-69. MR 53:9966

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35B35, 35Q53

Retrieve articles in all journals with MSC (2000): 35B35, 35Q53

Additional Information

Frank Merle
Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, avenue Adolphe Chauvin, BP 222, 95302 Cergy–Pontoise, France

Keywords: Blow-up, critical, KdV
Received by editor(s): July 25, 2000
Received by editor(s) in revised form: November 1, 2000
Published electronically: March 20, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society