Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Existence of blow-up solutions in the energy space for the critical generalized KdV equation
HTML articles powered by AMS MathViewer

by Frank Merle
J. Amer. Math. Soc. 14 (2001), 555-578
DOI: https://doi.org/10.1090/S0894-0347-01-00369-1
Published electronically: March 20, 2001

Abstract:

For the critical generalized Korteweg–de Vries equation, we establish blow-up in finite or infinite time in $H^1(\mathbf R)$ for initial data with negative energy, close to a soliton up to scaling and translation.
References
  • J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 351 (1995), no. 1695, 107–164. MR 1336983, DOI 10.1098/rsta.1995.0027
  • J. L. Bona, P. E. Souganidis, and W. A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987), no. 1841, 395–412. MR 897729
  • Jean Bourgain, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 31–44. MR 1403913
  • J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
  • T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), no. 4, 549–561. MR 677997, DOI 10.1007/BF01403504
  • B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879, DOI 10.1007/BF01221125
  • B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, DOI 10.1080/03605308108820196
  • J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20 (1989), no. 6, 1388–1425. MR 1019307, DOI 10.1137/0520091
  • Manoussos Grillakis, Jalal Shatah, and Walter Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal. 74 (1987), no. 1, 160–197. MR 901236, DOI 10.1016/0022-1236(87)90044-9
  • Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93–128. MR 759907
  • Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620. MR 1211741, DOI 10.1002/cpa.3160460405
  • KPV3 C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow-up solutions for the generalized KdV equation critical in $L^2$, Contemp. Math. 263 (2000), 131–156. KDV D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. 539 (1895), 422–443.
  • Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490. MR 235310, DOI 10.1002/cpa.3160210503
  • MM Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg–de Vries equation, to appear in Geometrical and Functional Analysis. MM2 Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, Journal de Math. Pures et Appliquees 79 (2000), 339–425. MM3 Y. Martel and F. Merle, Asymptotic stability of solitons for the subcritical generalized Korteweg–de Vries equation, to appear in Archive for Rational Mechanics and Analysis.
  • Frank Merle, Asymptotics for $L^2$ minimal blow-up solutions of critical nonlinear Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 5, 553–565 (English, with English and French summaries). MR 1409662, DOI 10.1016/S0294-1449(16)30114-7
  • Frank Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), 1998, pp. 57–66. MR 1648140
  • MZ F. Merle and H. Zaag, A Liouville Theorem for a vector valued nonlinear heat equation and applications, Math. Ann. 316 (2000) 1, 103–137.
  • Robert L. Pego and Michael I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994), no. 2, 305–349. MR 1289328, DOI 10.1007/BF02101705
  • Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR 869254
  • A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999), no. 1, 9–74. MR 1681113, DOI 10.1007/s002220050303
  • A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
  • Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044, DOI 10.1007/BF01208265
  • Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. MR 783974, DOI 10.1137/0516034
  • Michael I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 51–67. MR 820338, DOI 10.1002/cpa.3160390103
  • V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz. 61 (1971), no. 1, 118–134 (Russian, with English summary); English transl., Soviet Physics JETP 34 (1972), no. 1, 62–69. MR 0406174
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35B35, 35Q53
  • Retrieve articles in all journals with MSC (2000): 35B35, 35Q53
Bibliographic Information
  • Frank Merle
  • Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, avenue Adolphe Chauvin, BP 222, 95302 Cergy–Pontoise, France
  • MR Author ID: 123710
  • Received by editor(s): July 25, 2000
  • Received by editor(s) in revised form: November 1, 2000
  • Published electronically: March 20, 2001
  • © Copyright 2001 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 14 (2001), 555-578
  • MSC (2000): Primary 35B35, 35Q53
  • DOI: https://doi.org/10.1090/S0894-0347-01-00369-1
  • MathSciNet review: 1824989