Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Non-axial self-similar hole filling for the porous medium equation


Authors: S. B. Angenent and D. G. Aronson
Journal: J. Amer. Math. Soc. 14 (2001), 737-782
MSC (2000): Primary 35K65, 37G99; Secondary 35K55, 76S05
DOI: https://doi.org/10.1090/S0894-0347-01-00372-1
Published electronically: May 30, 2001
MathSciNet review: 1839916
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We construct non-axially symmetric self-similar solutions to the porous medium equation by showing that the family of radial self-similar solutions found by Aronson and Graveleau (1993) undergoes a sequence of symmetry breaking bifurcations as the parameter $m$ decreases from $m=\infty$ to $m=1$.


References [Enhancements On Off] (What's this?)

  • 1. S.B.Angenent and D.G.Aronson, The focusing problem for the radially symmetric porous medium equation,Comm. P.D.E. 20 (1995), 1217-1240. MR 96c:35074
  • 2. S.B.Angenent and D.G.Aronson, Intermediate asymptotics for convergent viscous gravity currents, Phys. Fluids 7 (1995), 223-225. MR 95h:76038
  • 3. D.G.Aronson and Ph.Benilan, Regularité des solutions de l'équation des milieux poreux dans $\mathbb{R} ^N$, C.R. Acad. Sci. Paris 288 (1979), 103-105. MR 82i:35090
  • 4. D.G.Aronson, The porous medium equation, in SOME PROBLEMS IN NONLINEAR DIFFUSION, edited by A.Fasano and M.Primicerio, Lecture Notes in Mathematics 1224, Springer, Berlin, 1986. MR 88a:35130
  • 5. D.G.Aronson, O.Gil, and J.L.Vazquez, Limit behaviour of focusing solutions to nonlinear diffusions, Comm. P.D.E. 23 (1998), 307-332. MR 98j:35082
  • 6. D.G.Aronson and J. Graveleau, A self-similar solution to the focusing problem for the porous medium equation, Euro. J. Appl. Math. 4 (1993), 65-81. MR 94c:35096
  • 7. G.I.Barenblatt, SCALING, SELF-SIMILARITY AND INTERMEDIATE ASYMPTOTICS, Cambridge University Press, New York, 1998. MR 98a:00005
  • 8. C.M.Bender and S.A.Orszag, ADVANCED MATHEMATICAL METHODS FOR SCIENTISTS AND ENGINEERS, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978. MR 80d:00030
  • 9. J.Bergh and J.Löffström, INTERPOLATION SPACES, Grundlehren der mathematischen Wissenschaften 223, Springer Verlag, 1976. MR 58:2349
  • 10. S.I.Betelú, D.G.Aronson, and S.B.Angenent, Renormalization study of two-dimensional convergent solutions of the porous medium equation, Physica D, 138 (2000), no. 3-4, 344-359. (Preprint: patt-sol 9908006 from http://xxx.lanl.gov/.) MR 2000j:76132
  • 11. S.I.Betelú, J.Lowengrub, and D.G.Aronson, Focusing of an elongated hole in porous medium flow, preprint.
  • 12. S.N.Chow and J.K.Hale, METHODS OF BIFURCATION THEORY, Grundlehren der mathematischen Wissenschaften 251, Springer, 1982. MR 84e:58019
  • 13. J.A.Diez, L.P.Thomas, S.Betelú, R.Gratton, B.Marino, J.Gratton, D.G.Aronson, and S.B.Angenent, Noncircular converging flows in viscous gravity currents, Phys. Rev. E 58(1998), 6182-6187.
  • 14. G.B.Folland, INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS, Princeton University Press, 1976. MR 58:29031
  • 15. D.Gilbarg and N.S.Trudinger, ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER, 2nd edition, Grundlehren der mathematischen Wissenschaften 224, Springer Verlag, 1983. MR 86c:35035
  • 16. M.Golubitsky, I.Stewart, and D.G.Schaeffer, SINGULARITIES AND GROUPS IN BIFURCATION THEORY, VOLUME II, Springer Verlag, Applied Math.Sciences 69 (1988). MR 89m:58038
  • 17. J.Graveleau, Quelques solutions auto-semblables pour l'équation dela chaleur non- linéair, Rapport Interne C.E.A. (1972).
  • 18. H.Hochstadt, THE FUNCTIONS OF MATHEMATICAL PHYSICS, Dover, 1986. MR 88b:33001
  • 19. L.Hörmander, THE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL OPERATORS (I), Springer Grundlehren Bd.256., 1983. MR 85g:35002a
  • 20. T.Kato, PERTURBATION THEORY FOR LINEAR OPERATORS. Second edition. Grundlehren der Mathematischen Wissenschaften 132, Springer-Verlag, Berlin-New York, 1976. MR 53:11389
  • 21. G.da Prato and P.Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. (9) 54 (1975), no. 3, 305-387. MR 56:1129
  • 22. E.M.Stein, HARMONIC ANALYSIS, Princeton Mathematical Series 43, P.U.P. 1993. MR 95c:42002
  • 23. E.T.Whittaker and G.N.Watson, A COURSE IN MODERN ANALYSIS, Cambridge University Press, 1927. MR 97k:01072 (Review of the reprint of the fourth (1927) edition.)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35K65, 37G99, 35K55, 76S05

Retrieve articles in all journals with MSC (2000): 35K65, 37G99, 35K55, 76S05


Additional Information

S. B. Angenent
Affiliation: Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin 53706
Email: angenent@math.wisc.edu

D. G. Aronson
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: don@math.umn.edu

DOI: https://doi.org/10.1090/S0894-0347-01-00372-1
Keywords: Porous medium equation, self-similar solutions, symmetry breaking bifurcation
Received by editor(s): November 1, 1999
Published electronically: May 30, 2001
Additional Notes: The first author was supported by the National Science Foundation
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society