INDEX TO VOLUME 14 (2001)

Angenent, S. B., and Aronson, D. G. Non-axial self-similar hole filling for the porous medium equation, 737
Aronson, D. G. See Angenent, S. B.
Babai, László. See Rónyai, Lajos
Benjamini, Itai, and Schramm, Oded. Percolation in the hyperbolic plane, 487
Bigelow, Stephen J. Braid groups are linear, 471
Breuil, Christophe, Conrad, Brian, Diamond, Fred, and Taylor, Richard. On the modularity of elliptic curves over Q: Wild 3-adic exercises, 843
Bridgeland, Tom, King, Alastair, and Reid, Miles. The McKay correspondence as an equivalence of derived categories, 535
Bryant, Robert L. Bochner-Kähler metrics, 623
Buechler, Steven, Pillay, Anand, and Wagner, Frank. Supersimple theories, 109
Chernousov, Vladimir, and Merkurjev, Alexander. R-equivalence in spinor groups, 509
Cohn, Henry, Kenyon, Richard, and Propp, James. A variational principle for domino tilings, 297
Conrad, Brian. See Breuil, Christophe
Constantin, Peter. An Eulerian-Lagrangian approach for incompressible fluids: Local theory, 263
Denef, Jan, and Loeser, François. Definable sets, motives and p-adic integrals, 429
DeVore, Ronald, and Petrova, Guergana. The averaging lemma, 279
Diamond, Fred. See Breuil, Christophe
Garoufalidis, Stavros, and Pommersheim, James E. Values of zeta functions at negative integers, Dedekind sums and toric geometry, 1
Gelbart, Stephen, and Shahidi, Freydoon. Boundedness of automorphic L-functions in vertical strips, 79
Granville, Andrew, and Soundararajan, K. Large character sums, 365
Haiman, Mark. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, 941
Hass, Joel, and Lagarias, Jeffrey C. The number of Reidemeister moves needed for unknotting, 399
Hjorth, Greg. Vaught's schemes, polygraphs and the Macdonald positivity conjecture, 941
Hajnics, Steven, Pillay, Anand, and Wagner, Frank. Supersimple theories, 109
King, Alastair. See Bridgeland, Tom
Lagarias, Jeffrey C. See Hass, Joel
Loeser, François. See Denef, Jan
Marmi, Stefano, Moussa, Pierre, and Yoccoz, Jean-Christophe. Complex Brjuno functions, 783
Merkurjev, Alexander. See Chernousov, Vladimir
Merle, Frank. Existence of blow-up solutions in the energy space for the critical generalized KdV equation, 555
Moussa, Pierre. See Marmi, Stefano
Nakajima, Hiraku. Quiver varieties and finite dimensional representations of quantum affine algebras, 145
Pak, Igor. See Lubotzky, Alexander
Petrova, Guergana. See DeVore, Ronald
Pillay, Anand. See Buechler, Steven
Pommersheim, James E. See Garoufalidis, Stavros
Propp, James. See Cohn, Henry
Reid, Miles. See Bridgeland, Tom
Rónyai, Lajos, Babai, László, and Ganapathy, Murali K. On the number of zero-patterns of a sequence of polynomials, 717
Schramm, Oded. See Benjamini, Itai
Shahidi, Freydoon. See Gelbart, Stephen
Soundararajan, K. See Granville, Andrew
Taylor, Richard. See Breuil, Christophe
Wagner, Frank. See Buechler, Steven
Yampolsky, Michael, and Zakeri, Saeed. *Mating Siegel quadratic polynomials*, 25
Yoccoz, Jean-Christophe. *See Marmi, Stefano*
Zakeri, Saeed. *See Yampolsky, Michael*
Stavros Garoufalidis and James E. Pommersheim, Values of zeta functions at negative integers, Dedekind sums and toric geometry .. 1
Michael Yampolsky and Saeed Zakeri, Mating Siegel quadratic polynomials .. 25
Stephen Gelbart and Freydoon Shahidi, Boundedness of automorphic L-functions in vertical strips ... 79
Steven Buechler, Anand Pillay, and Frank Wagner, Supersimple theories .. 109
Greg Hjorth, Vaught's conjecture on analytic sets .. 125
Hiraku Nakajima, Quiver varieties and finite dimensional representations of quantum affine algebras ... 145
M. Kapranov, Double affine Hecke algebras and 2-dimensional local fields 239

Peter Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory ... 263
Ronald DeVore and Guergana Petrova, The averaging lemma 279
Henry Cohn, Richard Kenyon, and James Propp, A variational principle for domino tilings ... 297
Alexander Lubotzky and Igor Pak, The product replacement algorithm and Kazhdan’s property (T) ... 347
Andrew Granville and K. Soundararajan, Large character sums 365
Joel Hass and Jeffrey C. Lagarias, The number of Reidemeister moves needed for unknotting ... 399
Jan Denef and François Loeser, Definable sets, motives and p-adic integrals .. 429
Stephen J. Bigelow, Braid groups are linear ... 471
Itai Benjamini and Oded Schramm, Percolation in the hyperbolic plane 487

Vladimir Chernousov and Alexander Merkurjev, R-equivalence in spinor groups .. 509
Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories 535
Frank Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation ... 555
Robert L. Bryant, *Bochner-Kähler metrics* .. 623
Lajos Rónyai, László Babai, and Murali K. Ganapathy, *On the number of zero-patterns of a sequence of polynomials* 717

Vol. 14, No. 4 October 2001

S. B. Angenent and D. G. Aronson, *Non-axial self-similar hole filling for the porous medium equation* .. 737
Stefano Marmi, Pierre Moussa, and Jean-Christophe Yoccoz, *Complex Brjuno functions* ... 783
Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, *On the modularity of elliptic curves over \(\mathbb{Q} \): Wild 3-adic exercises* .. 843
Mark Haiman, *Hilbert schemes, polygraphs and the Macdonald positivity conjecture* .. 941
Editors

Carlos Kenig
Department of Mathematics
University of Chicago
5734 University Avenue
Chicago, IL 60637-1514
cenk@math.uchicago.edu

Ingrid Daubechies
Department of Mathematics & PACM
218 Fine Hall
Princeton University
Princeton, NJ 08544-1000
ingrid@math.princeton.edu

Richard M. Schoen
Department of Mathematics
Stanford University
Stanford, CA 94305-2060
schoen@math.stanford.edu

Aise Johan de Jong
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
dejong@math.mit.edu

Bernd Sturmfels
Department of Mathematics
University of California at Berkeley
Berkeley, CA 94720-0001
bernd@math.berkeley.edu

Associate Editors

James G. Arthur, University of Toronto
Alexander Beilinson, University of Chicago
F. Michael Christ, University of California, Berkeley
Constantine M. Dafermos, Brown University
Weinan E, Princeton University
Lawrence C. Evans, University of California, Berkeley
Michael J. Hopkins, Massachusetts Institute of Technology
Ehud Hrushovski, Hebrew University of Jerusalem
Robert Lazarsfeld, University of Michigan
Grigoriu A. Margulis, Yale University
Curtis T. McMullen, Harvard University
Tomasz S. Mrowka, Massachusetts Institute of Technology
Bjorn Poonen, University of California, Berkeley
Jonathan M. Rosenberg, University of Maryland
Karen E. Smith, University of Michigan
Richard Stanley, Massachusetts Institute of Technology
W. Hugh Woodin, University of California, Berkeley
Efim Zelmanov, Yale University

Assistant to the Editorial Board

Judy Garza
Department of Mathematics
University of Chicago
Chicago, IL 60637-1514
jgarza@math.uchicago.edu

Editorial Information

As of May 31, 2001, the backlog for this journal was approximately 0 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by
the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue). In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the manuscript has not been submitted to nor is it under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to one of the Editors and the author should keep one copy. IF an editor is agreeable, an electronic manuscript prepared in \TeX{} or \LaTeX{} may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page must contain a descriptive title that is short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. Although an abstract is not required upon initial submission, upon acceptance authors will be requested to supply an abstract for the electronic version of this journal. The AMS offers free worldwide access to the electronic abstracts. An abstract should be at least one complete sentence and at most 300 words. No abstracts will appear in the printed journal starting in 1998. Included with the footnotes to the paper should be the 2000 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from \url{www.ams.org/msc/}. The list of classifications is also available in print starting with the 1999 annual index of Mathematical Reviews. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from \url{www.ams.org/publications/}. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at \url{www.ams.org/mrlookup/}. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for \LaTeX{}. To this end, the Society has prepared \LaTeX{} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the AMS Author Handbook, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \LaTeX{} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \TeX{}, using \LaTeX{} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \LaTeX{} papers also move more efficiently through the production stream, helping to minimize publishing costs.
AMS-\LaTeX{} is the highly preferred format of \TeX{}, but author packages are also available in AMS-\TeX{}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \TeX{} or plain \TeX{} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \LaTeX{} users will find that AMS-\LaTeX{} is the same as \LaTeX{} with additional commands to simplify the typesetting of mathematics, and users of plain \TeX{} should have the foundation for learning AMS-\LaTeX{}.

Authors may retrieve an author package from the AMS website starting from www.ams.org/tex/ or via FTP to ftp.ams.org (login as anonymous, enter username as password, and type cd pub/author-info). The AMS Author Handbook and the Instruction Manual are available in PDF format following the author packages link from www.ams.org/tex/. The author package can also be obtained free of charge by sending email to pub@ams.org (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify AMS-\LaTeX{} or AMS-\TeX{}, Macintosh or IBM (3.5) format, and the publication in which your paper will appear. Please be sure to include your complete mailing address.

At the time of submission, authors should indicate if the paper has been prepared using AMS-\LaTeX{} or AMS-\TeX{} and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via email to pub-submit@ams.org (Internet) or on diskette to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When sending a manuscript electronically, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available at www.ams.org/jourhtml/graphics.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.
Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website corrections may be made to the paper by submitting a traditional errata article to the Editor. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.

Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word all on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to jams-query@ams.org.

\TeX files available. Beginning with the January 1992 issue of the *Bulletin* and the January 1996 issues of *Transactions, Proceedings, Mathematics of Computation*, and the *Journal of the AMS*, \TeX files can be downloaded from the AMS website starting from www.ams.org/journals/. Authors without Web access may request their files at the address given below after the article has been published. For *Bulletin* papers published in 1987 through 1991 and for *Transactions, Proceedings, Mathematics of Computation*, and the *Journal of the AMS* papers published in 1987 through 1995, \TeX files are available upon request for authors without Web access by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because \TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX files cannot be guaranteed to run through the author’s version of \TeX without errors. The AMS
regrets that it cannot provide support to eliminate such errors in the author’s \TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to jams-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
S. B. Angenent and D. G. Aronson, Non-axial self-similar hole filling for the porous medium equation ... 737
Stefano Marmi, Pierre Moussa, and Jean-Christophe Yoccoz, Complex Brjuno functions .. 783
Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over \mathbb{Q}: Wild 3-adic exercises ... 843
Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture .. 941