Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Compactifying the space of stable maps


Authors: Dan Abramovich and Angelo Vistoli
Journal: J. Amer. Math. Soc. 15 (2002), 27-75
MSC (2000): Primary 14H10, 14D20
DOI: https://doi.org/10.1090/S0894-0347-01-00380-0
Published electronically: July 31, 2001
MathSciNet review: 1862797
Full-text PDF
View in AMS MathViewer New

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study a notion of twisted stable map, from a curve to a tame Deligne-Mumford stack, which generalizes the well-known notion of stable map to a projective variety.


References [Enhancements On Off] (What's this?)

  • [$\aleph$-C-V] D. Abramovich, A. Corti and A. Vistoli, Twisted bundles and admissible covers, preprint, 2001, math.AG/0106211.
  • [$\aleph$-G-V] D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quantum products, in preparation.
  • [$\aleph$-J] D. Abramovich and T. Jarvis, Moduli of twisted spin curves, preprint, math.AG/0104154.
  • [$\aleph$-O] D. Abramovich and F. Oort, Stable maps and Hurwitz schemes in mixed characteristic. In: Advances in Algebraic Geometry Motivated by Physics, Emma Previato (ed.), AMS, 2001. MR 2001h:14009
  • [$\aleph$-V1] D. Abramovich and A. Vistoli, Complete moduli for families over semistable curves, preprint, math.AG/9811059.
  • [$\aleph$-V2] D. Abramovich and A. Vistoli, Complete moduli for fibered surfaces. In Recent Progress in Intersection Theory, G. Ellingsrud, W. Fulton, A. Vistoli (eds.), Birkhäuser, 2000.
  • [Ar] M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165-189. MR 53:2945
  • [B-M] Kai Behrend and Yuri I. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1-60. MR 98i:14014
  • [B-G-I] P. Berthelot, A. Grothendieck and L. Illusie, Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. Lecture Notes in Mathematics, Vol. 225, Springer, Berlin, 1971. MR 50:7133
  • [C-R] W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, preprint, math.AG/0103156.
  • [D-M] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75-109. MR 41:6850
  • [E-H-K-V] D. Edidin, B. Hassett, A. Kresch and A. Vistoli, Brauer groups and quotient stacks, American Journal of Mathematics, to appear, math.AG/9905049.
  • [E-G] D. Edidin and W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595-634. MR 99j:14003a
  • [F-G] B. Fantechi and L. Göttsche, Orbifold cohomology for global quotients, preprint, math.AG/0104207.
  • [F-P] William Fulton and Rahul Pandharipande, Notes on stable maps and quantum cohomology. in Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., Part 2, Amer. Math. Soc., Providence, RI, 1997, 45-96. MR 98m:14025
  • [G-EGA] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. No. 11 (1961), 167 pp.; II, Inst. Hautes Études Sci. Publ. Math. No. 17 (1963), 91 pp. MR 36:177c; MR 29:1210
  • [G-FGA] A. Grothendieck, Fondements de la géométrie algébrique. Extraits du Sém. Bourbaki, 1957 - 1962. Secrétariat Math., Paris, 1962. MR 26:3566
  • [G-SGA1] A. Grothendieck, Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1). Dirigé par A. Grothendieck. Augmenté de deux exposés de M. Raynaud. Lecture Notes in Mathematics, Vol. 224, Springer, Berlin, 1971. MR 50:7129
  • [Il] L. Illusie, Complexe cotangent et déformations. I, II, Lecture Notes in Mathematics, Vol. 239, Springer, Berlin, 1971 & Lecture Notes in Mathematics, Vol. 283, Springer, Berlin, 1972. MR 58:10886a; MR 58:10886b
  • [dJ-O] A. J. de Jong and F. Oort, On extending families of curves, J. Alg. Geom. 6 (1997), no. 3, 545-562. MR 99f:14028
  • [K-M] S. Keel and S. Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193-213. MR 97m:14014
  • [K-S] G. M. Kelly and R. Street, Review of the elements of $2$-categories. In Category Seminar (Proc. Sem., Sydney, 1972/1973), Lecture Notes in Math., Vol. 420, Springer, Berlin, 1974. MR 50:10010
  • [Kn] D. Knutson, Algebraic spaces, Lecture Notes in Math., Vol. 203, Springer, Berlin, 1971. MR 46:1791
  • [Ko] M. Kontsevich, Enumeration of rational curves via torus actions. In The moduli space of curves (Texel Island, 1994), 335-368, Progr. Math., 129, Birkhäuser, Boston, Boston, MA, 1995. MR 97d:14077
  • [Kr] A. Kresch, Cycle groups for Artin stacks, Inventiones Mathematicae 138 (1999), 495-536. MR 2001a:14003
  • [La] G. La Nave, Stable reduction for elliptic surfaces with sections, Ph.D. Thesis, Brandeis University, 2000.
  • [L-MB] G. Laumon and L. Moret-Bailly, Champs Algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete 39, Springer-Verlag, 2000. MR 2001f:14006
  • [Ma] H. Matsumura, Commutative ring theory, Translated from the Japanese by M. Reid, Second edition, Cambridge Univ. Press, Cambridge, 1989. MR 90i:13001
  • [Mi] J. S. Milne, Étale cohomology, Princeton Univ. Press, Princeton, N.J., 1980. MR 81j:14002
  • [Mo] S. Mochizuki, Extending families of curves over log regular schemes, J. Reine Angew. Math. 511 (1999), 43-71. MR 2000f:14041
  • [Vi] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613-670. MR 90k:14004
  • [We] S. Wewers, Construction of Hurwitz spaces, Institut für Experimentelle Mathematik preprint No. 21 (1998).

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14H10, 14D20

Retrieve articles in all journals with MSC (2000): 14H10, 14D20


Additional Information

Dan Abramovich
Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
Email: abrmovic@math.bu.edu

Angelo Vistoli
Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy
Email: vistoli@dm.unibo.it

DOI: https://doi.org/10.1090/S0894-0347-01-00380-0
Received by editor(s): May 11, 2000
Published electronically: July 31, 2001
Additional Notes: The first author’s research was partially supported by National Science Foundation grant DMS-9700520 and by an Alfred P. Sloan research fellowship
The second author’s research was partially supported by the University of Bologna, funds for selected research topics
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society