Strongly typical representations of the basic classical Lie superalgebras
Author:
Maria Gorelik
Journal:
J. Amer. Math. Soc. 15 (2002), 167184
MSC (2000):
Primary 17B10, 17B20
Published electronically:
September 24, 2001
MathSciNet review:
1862800
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We describe the category of representations with a strongly typical central character of a basic classical Lie superalgebra in terms of representations of its even part.
 [BF]
Allen
D. Bell and Rolf
Farnsteiner, On the theory of Frobenius extensions
and its application to Lie superalgebras, Trans. Amer. Math. Soc. 335 (1993), no. 1, 407–424. MR 1097163
(93c:17049), http://dx.doi.org/10.1090/S00029947199310971635
 [BL]
Joseph
Bernstein and Valery
Lunts, A simple proof of Kostant’s theorem that
𝑈(𝔤) is free over its center, Amer. J. Math.
118 (1996), no. 5, 979–987. MR 1408495
(97h:17012)
 [BZV]
Michael
Bershadsky, Slava
Zhukov, and Arkady
Vaintrob, 𝑃𝑆𝐿(𝑛\vert𝑛)
sigma model as a conformal field theory, Nuclear Phys. B
559 (1999), no. 12, 205–234. MR 1725904
(2001b:81128), http://dx.doi.org/10.1016/S05503213(99)003788
 [D]
Michel
Duflo, Construction of primitive ideals in an enveloping
algebra, Lie groups and their representations (Proc. Summer School,
Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975,
pp. 77–93. MR 0399194
(53 #3045)
 [G1]
M. Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier. 50 (2000), no.6, 17451764.
 [G2]
M. Gorelik, Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras, preprint MSRI 2000019, math.RA/0008143.
 [GL1]
Maria
Gorelik and Emmanuel
Lanzmann, The minimal primitive spectrum of the enveloping algebra
of the Lie superalgebra 𝑜𝑠𝑝(1,2𝑙),
Adv. Math. 154 (2000), no. 2, 333–366. MR 1784679
(2001g:17023), http://dx.doi.org/10.1006/aima.2000.1927
 [J1]
A.
Joseph, Kostant’s problem, Goldie rank and the
Gel′fandKirillov conjecture, Invent. Math. 56
(1980), no. 3, 191–213. MR 561970
(82f:17008), http://dx.doi.org/10.1007/BF01390044
 [J2]
Anthony
Joseph, Quantum groups and their primitive ideals, Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)], vol. 29, SpringerVerlag, Berlin, 1995. MR 1315966
(96d:17015)
 [K1]
V.
G. Kac, Lie superalgebras, Advances in Math.
26 (1977), no. 1, 8–96. MR 0486011
(58 #5803)
 [K2]
V.
G. Kac, Characters of typical representations of classical Lie
superalgebras, Comm. Algebra 5 (1977), no. 8,
889–897. MR 0444725
(56 #3075)
 [K3]
V.
Kac, Representations of classical Lie superalgebras,
Differential geometrical methods in mathematical physics, II (Proc. Conf.,
Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer,
Berlin, 1978, pp. 597–626. MR 519631
(80f:17006)
 [Ko]
Bertram
Kostant, Lie group representations on polynomial rings, Amer.
J. Math. 85 (1963), 327–404. MR 0158024
(28 #1252)
 [M1]
Ian
M. Musson, On the center of the enveloping algebra of a classical
simple Lie superalgebra, J. Algebra 193 (1997),
no. 1, 75–101. MR 1456569
(98k:17012), http://dx.doi.org/10.1006/jabr.1996.7000
 [P]
Ivan
Penkov, Generic representations of classical Lie superalgebras and
their localization, Monatsh. Math. 118 (1994),
no. 34, 267–313. MR 1309652
(95k:17011), http://dx.doi.org/10.1007/BF01301693
 [PS1]
Ivan
Penkov and Vera
Serganova, Representations of classical Lie superalgebras of type
𝐼, Indag. Math. (N.S.) 3 (1992), no. 4,
419–466. MR 1201236
(93k:17006), http://dx.doi.org/10.1016/00193577(92)90020L
 [PS2]
Ivan
Penkov and Vera
Serganova, Generic irreducible representations of
finitedimensional Lie superalgebras, Internat. J. Math.
5 (1994), no. 3, 389–419. MR 1274125
(95c:17015), http://dx.doi.org/10.1142/S0129167X9400022X
 [S1]
A.
N. Sergeev, Invariant polynomial functions on Lie
superalgebras, C. R. Acad. Bulgare Sci. 35 (1982),
no. 5, 573–576 (Russian). MR 680999
(84h:17015)
 [BF]
 A. D. Bell, R. Farnsteiner, On the theory of Frobenius extensions and its application to Lie superalgebras, Trans. AMS 335 (1993) no.1, 407424. MR 93c:17049
 [BL]
 J. Bernstein, V. Lunts, A simple proof of Kostant's theorem that is free over its center, Amer. J. Math. 118 (1996), no.5, 979987. MR 97h:17012
 [BZV]
 M. Bershadsky, S. Zhukov, A. Vaintrob, sigma model as a conformal field theory, Nuclear Phys. B 559 (1999), no.12, 205234. MR 2001b:81128
 [D]
 M. Duflo, Construction of primitive ideals in an enveloping algebra, in: I. M. Gelfand, ed., Publ. of 1971 Summer School in Math., Janos Bolyai Math. Soc., Budapest, 7793. MR 53:3045
 [G1]
 M. Gorelik, On the ghost centre of Lie superalgebras, Ann. Inst. Fourier. 50 (2000), no.6, 17451764.
 [G2]
 M. Gorelik, Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras, preprint MSRI 2000019, math.RA/0008143.
 [GL1]
 M. Gorelik, E. Lanzmann, The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra , Adv. in Math. 154 (2000), no.2, 333366. MR 2001g:17023
 [J1]
 A. Joseph, Kostant's problem, Goldie rank and the GelfandKirillov conjecture, Invent. Math. 56 (1980), 193204. MR 82f:17008
 [J2]
 A. Joseph, Quantum groups and their primitive ideals, Springer, 1995. MR 96d:17015
 [K1]
 V. G. Kac, Lie superalgebras, Adv. in Math. 26 (1977), 896. MR 58:5803
 [K2]
 V. G. Kac, Characters of typical representations of Lie superalgebras, Comm. Alg. 5 (1977), 889997. MR 56:3075
 [K3]
 V. G. Kac, Representations of classical Lie superalgebras, Lecture Notes in Math., SpringerVerlag, Berlin, 676 (1978), 597626. MR 80f:17006
 [Ko]
 B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327404. MR 28:1252
 [M1]
 I. M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra, J. of Algebra 193 (1997), 75101. MR 98k:17012
 [P]
 I. Penkov, Generic representations of classical Lie superalgebras and their localization, Monatshefte f. Math. 118 (1994), 267313. MR 95k:17011
 [PS1]
 I. Penkov, V. Serganova, Representation of classical Lie superalgebras of type I, Indag. Mathem. N.S. 3 (4) (1992), 419466. MR 93k:17006
 [PS2]
 I. Penkov, V. Serganova, Generic irreducible representations of finitedimensional Lie superalgebras, International J. Math., Vol. 5, No. 3 (1994), 389419. MR 95c:17015
 [S1]
 A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C.R. Acad. Bulgare Sci. 35 (1982), no.5, 573576. MR 84h:17015
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (2000):
17B10,
17B20
Retrieve articles in all journals
with MSC (2000):
17B10,
17B20
Additional Information
Maria Gorelik
Affiliation:
Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
Email:
gorelik@wisdom.weizmann.ac.il
DOI:
http://dx.doi.org/10.1090/S0894034701003812
PII:
S 08940347(01)003812
Keywords:
Basic classical Lie superalgebra,
Verma module
Received by editor(s):
December 6, 2000
Published electronically:
September 24, 2001
Additional Notes:
The author was partially supported by TMR Grant No.\ FMRXCT970100. Research at MSRI was supported in part by NSF grant DMS9701755
Article copyright:
© Copyright 2001
American Mathematical Society
