Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

   
 
 

 

Multi-linear operators given by singular multipliers


Authors: Camil Muscalu, Terence Tao and Christoph Thiele
Journal: J. Amer. Math. Soc. 15 (2002), 469-496
MSC (1991): Primary 42A45, 47H60; Secondary 45P05
DOI: https://doi.org/10.1090/S0894-0347-01-00379-4
Published electronically: December 10, 2001
MathSciNet review: 1887641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove $L^p$ estimates for a large class of multi-linear operators, which includes the multi-linear paraproducts studied by Coifman and Meyer (1991), as well as the bilinear Hilbert transform and other operators with large groups of modulation symmetries.


References [Enhancements On Off] (What's this?)

  • 1. Calderon, C. On commutators of singular integrals, Studia Math. 53 (1975), no. 2, 139-174. MR 52:1418
  • 2. Coifman, R. R and Meyer, Y. On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc 212 (1975), 315-331. MR 52:1144
  • 3. Coifman, R. R and Meyer, Y. Commutateurs d'integrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xi, 177-202. MR 80a:47076
  • 4. Coifman, R. R and Meyer, Y. Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis of Lipschitz curves, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md.), pp. 104-122, Lecture Notes in Math., 779 [1979]. MR 81g:42021
  • 5. Coifman, R. R and Meyer, Y. Au delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathématique de France, Paris 1978. MR 81b:47061
  • 6. Coifman, R. R and Meyer, Y. Non-linear harmonic analysis, operator theory and P.D.E., Beijing lectures in harmonic analysis (Beijing 1984), 3-45, Annals of Math. Studies 112, Princeton Univ. Press, Princeton NJ 1986. MR 88e:42030
  • 7. Coifman, R. R and Meyer, Y. Ondelettes et opérateurs III, Opérateurs multilinéaires, Actualités Mathématiques, Hermann, Paris 1991. MR 93i:42004
  • 8. Fefferman, C. Pointwise convergence of Fourier series, Ann. of Math. (2) 98, no.3, 551-571. MR 49:5676
  • 9. Gilbert, J. and Nahmod, A. Boundedness of bilinear operators with non-smooth symbols, Math. Res. Lett. 7 (2000), no. 5-6, 767-778, CMP 2001:07
  • 10. Gilbert, J. and Nahmod, A. Bilinear Operators with Non-Smooth Symbols I. J. Fourier Anal. and Appl. 7 (2001), 437-469.
  • 11. Gilbert, J. and Nahmod, A. $L^p$ - Boundedness of Time-Frequency Paraproducts, to appear in J. Fourier Anal. and Appl.
  • 12. Grafakos, L. and Torres, R. On multilinear singular integrals of Calderon-Zygmund type, to appear in the Proceedings of the El Escorial Conference held in El Escorial, Spain, July 3-7, 2000.
  • 13. Janson, S., On interpolation of multilinear operators, Function spaces and applications (Lund 1986), 290-302, Lecture Notes in Math. 1302, Springer, Berlin-New York, 1988. MR 89g:46114
  • 14. Kenig, C. and Stein, E. Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1-15. MR 2000k:42023a
  • 15. Lacey, M. and Thiele, C. $L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$, Ann. of Math. (2) 146 (1997), no. 3, 693-724. MR 99b:42014
  • 16. Lacey, M. and Thiele, C. On Calderon's conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475-196. MR 2000d:42003
  • 17. Stein, E. Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton NJ 1993. MR 95c:42002
  • 18. Thiele, C. On the Bilinear Hilbert transform, Universität Kiel, Habilitationsschrift [1998].

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 42A45, 47H60, 45P05

Retrieve articles in all journals with MSC (1991): 42A45, 47H60, 45P05


Additional Information

Camil Muscalu
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Address at time of publication: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: camil@math.brown.edu, camil@math.ucla.edu

Terence Tao
Affiliation: School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia
Address at time of publication: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: tao@math.ucla.edu

Christoph Thiele
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: thiele@math.ucla.edu

DOI: https://doi.org/10.1090/S0894-0347-01-00379-4
Keywords: Fourier analysis, multi-linear operators
Received by editor(s): November 30, 1999
Received by editor(s) in revised form: May 31, 2001
Published electronically: December 10, 2001
Additional Notes: The second author was supported by NSF Grant #9706764
The third author was supported by NSF Grant #9970469
Article copyright: © Copyright 2001 by the authors

American Mathematical Society