Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

   
 

 

Multi-linear operators given by singular multipliers


Authors: Camil Muscalu, Terence Tao and Christoph Thiele
Journal: J. Amer. Math. Soc. 15 (2002), 469-496
MSC (1991): Primary 42A45, 47H60; Secondary 45P05
Published electronically: December 10, 2001
MathSciNet review: 1887641
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove $L^p$ estimates for a large class of multi-linear operators, which includes the multi-linear paraproducts studied by Coifman and Meyer (1991), as well as the bilinear Hilbert transform and other operators with large groups of modulation symmetries.


References [Enhancements On Off] (What's this?)

  • 1. Calixto P. Calderón, On commutators of singular integrals, Studia Math. 53 (1975), no. 2, 139–174. MR 0380518
  • 2. R. R. Coifman and Yves Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331. MR 0380244, 10.1090/S0002-9947-1975-0380244-8
  • 3. R. Coifman and Y. Meyer, Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, xi, 177–202 (French, with English summary). MR 511821
  • 4. R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 104–122. MR 576041
  • 5. Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
  • 6. R. R. Coifman and Yves Meyer, Nonlinear harmonic analysis, operator theory and P.D.E, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 3–45. MR 864370
  • 7. Yves Meyer and R. R. Coifman, Ondelettes et opérateurs. III, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1991 (French). Opérateurs multilinéaires. [Multilinear operators]. MR 1160989
  • 8. Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551–571. MR 0340926
  • 9. Gilbert, J. and Nahmod, A. Boundedness of bilinear operators with non-smooth symbols, Math. Res. Lett. 7 (2000), no. 5-6, 767-778, CMP 2001:07
  • 10. Gilbert, J. and Nahmod, A. Bilinear Operators with Non-Smooth Symbols I. J. Fourier Anal. and Appl. 7 (2001), 437-469.
  • 11. Gilbert, J. and Nahmod, A. $L^p$ - Boundedness of Time-Frequency Paraproducts, to appear in J. Fourier Anal. and Appl.
  • 12. Grafakos, L. and Torres, R. On multilinear singular integrals of Calderon-Zygmund type, to appear in the Proceedings of the El Escorial Conference held in El Escorial, Spain, July 3-7, 2000.
  • 13. Svante Janson, On interpolation of multilinear operators, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 290–302. MR 942274, 10.1007/BFb0078880
  • 14. Carlos E. Kenig and Elias M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1–15. MR 1682725, 10.4310/MRL.1999.v6.n1.a1
  • 15. Michael Lacey and Christoph Thiele, 𝐿^{𝑝} estimates on the bilinear Hilbert transform for 2<𝑝<∞, Ann. of Math. (2) 146 (1997), no. 3, 693–724. MR 1491450, 10.2307/2952458
  • 16. Michael Lacey and Christoph Thiele, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475–496. MR 1689336, 10.2307/120971
  • 17. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • 18. Thiele, C. On the Bilinear Hilbert transform, Universität Kiel, Habilitationsschrift [1998].

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 42A45, 47H60, 45P05

Retrieve articles in all journals with MSC (1991): 42A45, 47H60, 45P05


Additional Information

Camil Muscalu
Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
Address at time of publication: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: camil@math.brown.edu, camil@math.ucla.edu

Terence Tao
Affiliation: School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia
Address at time of publication: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: tao@math.ucla.edu

Christoph Thiele
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: thiele@math.ucla.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-01-00379-4
Keywords: Fourier analysis, multi-linear operators
Received by editor(s): November 30, 1999
Received by editor(s) in revised form: May 31, 2001
Published electronically: December 10, 2001
Additional Notes: The second author was supported by NSF Grant #9706764
The third author was supported by NSF Grant #9970469
Article copyright: © Copyright 2001 by the authors