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CONSTRUCTION OF DISCRETE SERIES
FOR CLASSICAL p-ADIC GROUPS

COLETTE MŒGLIN AND MARKO TADIĆ

Introduction

The goal of this paper is to complete (after [M2]) the classification of irreducible
square integrable representations of classical p-adic groups, under a natural local
assumption (see below). This classification (see Theorem 6.1) also implies a pa-
rameterization of irreducible tempered representations of these groups (Theorem
13.1). Therefore, it implies a classification of the non-unitary duals of these groups
(modulo cuspidal data).

The classical groups whose classification of irreducible square integrable rep-
resentations we give are symplectic, orthogonal and unitary groups over a non-
archimedean local field F . For simplicity, in this introduction we shall explain the
classification in the case of symplectic and odd-orthogonal groups (in the case of
unitary groups, the Galois interpretation of the classification is substantially more
complicated). Denote by G a symplectic or odd-orthogonal group on the space (of
the corresponding type) of dimension 2n or 2n+ 1 respectively.

The classification of irreducible square integrable representations is directly re-
lated to the parameterization of irreducible square integrable representations in
terms of dual objects, which is predicted by Langlands program. These dual ob-
jects consist of two parts. The first part is a semi-simple morphism

ϕ : WF × SL(2,C) → LG,

where LG is the dual group of G (in the case that we consider, even for a non-split
orthogonal group, we can replace LG by its connected component; see [M3]). The
morphism ϕ has to be algebraic and discrete (by discrete we mean that it does not
factor through a proper Levi subgroup). The second part is a morphism

ε : Cent
LG

(Im(ϕ))→ {±1},

with the following restriction to the center of LG if G is odd-orthogonal: the re-
striction of ε to the center of LG is trivial if the anisotropic kernel has dimension
1, and is −1 if it has dimension 3. In fact, to take complete care of the anisotropic
kernel, we need to require a condition on det (ϕ), which is not now important to us.
This is explained in [M3] for the case of even-orthogonal groups. The condition on
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ε and det (ϕ) enables us to avoid requiring in the definition of being discrete that
the Levi factors of LG are defined over F (we shall assume that ϕ and ε satisfy the
above requirements).

A simple form of the parameterization of irreducible square integrable repre-
sentations predicted by Langlands program would be a bijection between sets of
all (isomorphism classes of) irreducible square integrable representations of G and
conjugacy classes of pairs

(ϕ, ε)

as above. This parameterization needs to satisfy a number of properties to be
unique (these properties concern liftings and the local harmonic analysis). Our ele-
mentary method does not give information in that direction. Further, although our
classification is on the line of the parameterization of irreducible square integrable
representations predicted by Langlands program, it does not prove that such a sim-
ple form of the parameterization of irreducible square integrable representations
exists. The problem is caused by the cuspidal representations, as we shall explain
later. A pair (ϕ, ε), which should correspond to a cuspidal representation, should
have a description in terms of cuspidal sheaves à la Lusztig. In our case, we can
give a much more elementary description of such a pair.

First of all, it is easy to describe Cent
LG

(Im(ϕ)), especially in the discrete case.
Consider the decomposition of ϕ into irreducible components:

ϕ =
⊕
(ρ,a)

ρ⊗ Ea.

In the above direct sum, ρ are irreducible representations of WF (necessarily or-
thogonal or symplectic, which follows from the property that ϕ is discrete) and
Ea is the irreducible (complex) algebraic representation of SL(2,C) of dimension
a ∈ N. This decomposition must be multiplicity free (this follows from the property
that ϕ is discrete). The parity of a is uniquely determined by ρ and G. Denote by

Jord(ϕ)

the set of all indexes (ρ, a) in the above direct sum decomposition. In particular,
for (ρ, a) ∈ Jord(ϕ), ρ⊗ Ea factors through an orthogonal subgroup of LG if G is
symplectic, and through a symplectic subgroup if G is orthogonal. In both cases,
this subgroup has a center isomorphic to Z/2Z, and further

Cent
LG

(Im(ϕ)) '
∏

(ρ,a)∈Jord(ϕ)

(Z/2Z),

where one needs to take elements of determinant one if G is symplectic (in the
orthogonal case, we have no restrictions).

Now we shall consider certain mappings

ε : Jord(ϕ)→ {±1}

(they correspond to morphisms of CentLG(Im(ϕ)) into {±1}). It is convenient to
define

Jord+(ϕ) := Jord(ϕ) ∪ {(ρ, 0); there exists a ∈ 2N such that (ρ, a) ∈ Jord(ϕ)}.
We shall extend ε as above to ε+ on Jord+(ϕ) by defining ε+(ρ, 0) = 1. We say
that (ϕ, ε) is cuspidal if and only if, for any (ρ, a) ∈ Jord+(ϕ) such that a ≥ 2, we
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have (ρ, a− 2) ∈ Jord+(ϕ) and

ε(ρ, a) 6= ε+(ρ, a− 2).

Cuspidal pairs should correspond to cuspidal representations. Let us note that in
the cuspidal case we do not have a lot of evidence that the set of all equivalence
classes of irreducible cuspidal representations is in a bijection with the set of all
conjugacy classes of cuspidal pairs (ϕ, ε). The case which is well understood and
which gives the evidence is the case where all ρ in Jord(ϕ) are quadratic characters
(see [M3]). Besides this, we can expect progress in the level 0 case, which would
provide further evidence.

To avoid a hypothesis regarding the cuspidal case, we proceed in the following
way. On the side of the irreducible representations of G, we have the notion of
the cuspidal support. A weaker notion of the cuspidal support is the notion of a
partial cuspidal support. The definition is the following. Let π be an irreducible
representation of G. Denote by πcusp an irreducible cuspidal representation of a
subgroup G′ of G from the same series of groups (symplectic or odd-orthogonal),
which satisfies the following condition: there exist a non-negative integer k and an
irreducible representation τ of GL(k, F ) such that GL(k, F )×G′ is (isomorphic to)
a Levi factor of a (standard) parabolic subgroup P of G and π is (isomorphic to) a
subquotient of the parabolically induced representation τoπcusp = IndGP (τ⊗πcusp).
Such πcusp always exists, it is unique (up to an isomorphism) and it is called the
partial cuspidal support of π.

The partial cuspidal support has an analogue on the Galois side, for the pair
(ϕ, ε). A combinatorial exercise (see section 14) implies that for each fixed pair
(ϕ, ε) as above, there exists a unique cuspidal pair (ϕϕ,ε,cusp, εϕ,ε,cusp) (called the
cuspidal support of (ϕ, ε)) corresponding to some subgroup G′ of G as above, which
satisfies one of the following two conditions (these conditions are related to two
possible types of (ϕ, ε)):

(1) We shall say that a pair (ϕ, ε) is alternated if ε(ρ, a−) 6= ε(ρ, a) for each pair
(ρ, a−), (ρ, a) ∈ Jord(ϕ) which satisfies: a− < a and (ρ, b) 6∈ Jord(ϕ) for any
a− < b < a. If (ϕ, ε) is alternated, the cuspidal support (ϕϕ,ε,cusp, εϕ,ε,cusp)
must satisfy the following: There exists an injection

ψ : Jord(ϕ)→ Jord+(ϕϕ,ε,cusp)

whose image contains Jord(ϕϕ,ε,cusp). Further, for any irreducible represen-
tation ρ such (ρ, b) ∈ Jord(ϕ) for some positive integer b, there needs to
exist a monotone mapping ψρ (i.e. preserves the ordering of Z+) such that

ψ(ρ, a) = (ρ, ψρ(a))

and

ε(ρ, a) = εϕ,ε,cusp(ρ, ψρ(a))

for any (ρ, a) ∈ Jord(ϕ).
Let us note that the condition in the definition of the cuspidal pair determines

what is the image of ψ.
(2) Suppose that (ϕ, ε) is not alternated. Then there exist (ρ, a−) and (ρ, a) ∈

Jord(ϕ), a− < a, which satisfy the following properties:

if a− < b < a, then (ρ, b) 6∈ Jord(ϕ)
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and

ε(ρ, a−) = ε(ρ, a).

Define

ϕ1 : =
⊕

(ρ′,a′)∈Jord(ϕ)\{(ρ,a−),(ρ,a)}
ρ′ ⊗ Ea′ .

This is a parameter for a subgroup G1 of G of the same type. There is
an obvious way to define a restriction ε1 of ε corresponding to the group
G1. Applying this construction several times, we shall come from (ϕ, ε) in
finitely many steps to some (ϕ′, ε′) which is of alternated type. We define
(ϕϕ,ε,cusp, εϕ,ε,cusp) to be the cuspidal support of (ϕ′, ε′) (as defined in (1)).

The definition of ϕϕ,ε,cusp depends on both ϕ and ε. The fibers of the mapping
(ϕ, ε) 7→ (ϕϕ,ε,cusp, εϕ,ε,cusp) have the following simple property. To any (ϕ, ε), we
can associate (ϕ,∆ε), where ∆ε is the morphism

Jord+(ϕ)× Jord+(ϕ)→ {±1},
defined only on the pairs (ρ, a), (ρ′, a′) for which ρ = ρ′. On such a pair, ∆ε is
defined by

∆ε((ρ, a), (ρ, a′)) = ε(ρ, a)ε(ρ, a′)−1.

An easy combinatorial exercise (see section 14) shows that the fibers of the mapping

(ϕ, ε) 7→ (ϕ,∆ε)

are subsets of the fibers of the mapping

(ϕ, ε) 7→ ϕϕ,ε,cusp.

Now we can explain our classification of (equivalence classes of) irreducible
square integrable representations of G. Recall that in [M2] to each irreducible
square integrable representation π of G is associated (using elementary techniques)
a set Jord(π) of a similar type as Jord(ϕ) (see section 2, where we recall the def-
inition). We use the local Langlands correspondence for general linear groups to
identify these two type of sets (Jord(π)’s and Jord(ϕ)’s). There is still a problem
with the parity: parity of a for (ρ, a) ∈ Jord(ϕ) depends on G, and on whether ρ
is orthogonal or symplectic. On the other side, the parity of a for (ρ, a) ∈ Jord(π)
depends on G, and on the pole of a certain L-function. Conjecturally, the pole
(or holomorphy) reflects exactly the orthogonality or the symplecticity property.
This is true on the Galois side, but it is not yet proved that the Langlands corre-
spondence preserves this property (G. Henniart has recently announced a proof).
In this introduction, we shall assume this property. In the rest of the paper, we
shall not use the L-group explicitly. Therefore we do not (need to) assume this.
In [M2] a mapping ∆π which is of the same type as the ∆ε’s considered above is
associated to π. Actually, in [M2] the notation επ is used instead of ∆π . It would
be more consistent if ∆π was used there (see section 2, the part following (2-1),
for the definition of επ which corresponds to ∆π in the present paper). With our
elementary techniques, we are not able to prove the dimension relation:∑

(ρ,a)∈Jord(π)

a dim ρ =

{
2n, G = SO(2n+ 1);

2n+ 1, G = Sp(2n).
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We do not use this equality in the paper, except here in the introduction. We will
only assume the inequality ≤ which is now known by [M5]. This is the easier of two
inequalities, which would give the equality (≥ is the difficult part). Let us note that
this dimension property can be proved if we assume that some Arthur’s conjectures
hold. Therefore, we can (and it makes sense to) take this dimension equality as a
hypothesis (but only in the introduction).

Let us now state the principal result of [M2]. Assume that the basic assumption
(which will be discussed later) holds. Then the mapping

π 7→ (πcusp, Jord(π),∆π),

which is defined on the set of all equivalence classes of irreducible square integrable
representations of G, is injective, and it has the property that

Jord(πcusp) = Jord(ϕϕ,ε,cusp)

for any (ϕ, ε) such that Jord(ϕ) = Jord(π) and ∆ε = ∆π (we use the identification
of Jord(ϕ)’s and Jord(π)’s resulting from the local Langlands correspondences for
general linear groups). The last assertion is the admissibility condition from the
introduction of [M2].

The aim of this paper is to prove that the mapping π 7→ (πcusp, Jord(π),∆π)
given above is surjective. The main consequence of this proof is the fact that the
equivalence classes of irreducible square integrable representations ofG are classified
by the triples

(πcusp, ϕ,∆ε).

In such a triple, πcusp is a cuspidal representation of a subgroup of G from the same
series of groups (symplectic or orthogonal). Further, ϕ and ∆ε are coming in the
way that we have explained above from a pair ϕ, ε which satisfies∑

(ρ,a)∈Jord(ϕ)

a dim ρ =

{
2n, G = SO(2n+ 1);

2n+ 1, G = Sp(2n);

and

Jord(πcusp) = Jord(ϕϕ,ε,cusp).

The property that ϕ is discrete has a simple translation: Jord(ϕ) is multiplicity
free.

The surjectivity is proved under the basic assumption (BA) (see the second
section), which describes the reducibility points of a representation induced by
an irreducible cuspidal representation in terms of the Jordan bloc. This basic
assumption was supposed to hold in [M2]. In [M1] it is proved that (BA) follows
from a weak form of Arthur’s conjectures (they are recalled in [M1]). Note that
here we do not use any global work and that (BA) is purely a local statement. Our
basic assumption provides us with a possibility to compute Plancherel measures
(modulo holomorphic invertible functions) in terms of Jordan blocs. This point
of view was already present in [Sh1]. There F. Shahidi proved (BA) for generic
cuspidal representations. Therefore, if πcusp is generic, we do not need to assume
in our paper that (BA) holds (i.e. our paper has no hypothesis if πcusp is generic).

In fact, in this paper we avoid the use of the dual group in order to minimize
the assumptions on which this paper relies. We proceed in this paper much more
technically (and more directly). As explained above, our classification starts from
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cuspidal representations. We classify all irreducible square integrable subquotients
of the (generalized) principal series (i.e. all non-cuspidal irreducible square inte-
grable representations). A generalized principal series is an induced representation:(∏̀

k=1

νrkρk

)
o πcusp,

where ` ≥ 0, ρk are irreducible unitarizable representations of a general linear group,
ν is |det|F and rk ∈ R. Further, πcusp is an irreducible cuspidal representation of
some subgroup G′ of G from the same series of groups (symplectic or orthogonal;
see the first section for details regarding the notation). We do the classification
using only a (natural) assumption about reducibility points of parabolically induced
representations of the following type:

νxρk o πcusp,

where k ∈ K and x ∈ R. Our basic assumption is that this induced representation
is irreducible except when one of the following two possibilities occur:

(i) x = 0 or ±1/2, (ρk, a) /∈ Jord(πcusp) for all a ∈ N and νxρk o 1 reduces
(here we assume for simplicity that the group is split);

(ii) |x| ≥ 1 and (ρk, 2|x| − 1) ∈ Jord(πcusp) but (ρk, 2|x|+ 1) /∈ Jord(πcusp)
(see section 2, and also section 12 for another interpretation; see also section 13 of
[T2] for supporting evidence regarding (ii)). Moreover, we assume that a reducibil-
ity point as above, for fixed ρk, is unique up to a sign. G. Muić and F. Shahidi
have explained that this uniqueness follows from the work of A. Silberger ([Si]).

We shall now briefly describe the content of the paper. First, let us recall that in
the paper we shall never use the L-group explicitly. Thus, there are no morphisms
ϕ in the paper. It is replaced by its Jordan blocs, i.e. by a set Jord satisfying
a parity condition (and a dimension condition). This explains why ϕ’s disappear
in the rest of the paper. There is also a significant difference between the use of
the notation ε in this introduction, and the use of this notation in the rest of the
paper. In the rest of the paper, except for the introduction, ε will denote the partial
function which we have denoted by ∆ε in this introduction. Nevertheless, in our
description of the content of the paper which follows, we continue with the notation
which we have used above.

The first section introduces the notation. To simplify the exposition of the paper,
after introducing notation for classical groups, we restrict ourselves until the end of
section 14 to the case of symplectic and odd-orthogonal groups. The necessary mod-
ifications and comments regarding unitary and even-orthogonal groups are given in
sections 15 and 16. The second section recalls in detail the basic assumption and
the admissible triples. The following three sections collect preliminary results that
we shall use in the proof of the square integrability. The sixth section states the
main result of the paper. In the seventh section, we prove surjectivity for triples
(πcusp, ϕ,∆ε) in the case that ϕ, ε are alternated, i.e. satisfy the above condition
(1) with respect to its partial cuspidal support (this is clearly a property of ∆ε; it
does not depend on a choice of ε). We call this the alternated case. The other case
is called the mixed case. The proof in the mixed case proceeds by induction.

Suppose that πcusp, Jord (i.e. ϕ) and ε are fixed, and that

Jord(πcusp) = Jord(ϕϕ,ε,cusp).
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Let (ρ, a−), (ρ, a) ∈ Jord, a− < a, be such that ε(ρ, a−) = ε(ρ, a) and (ρ, b) 6∈ Jord
for a− < b < a. Define ϕ1, ε1 (and G1) in the same way as we did in the def-
inition of (ϕϕ,ε,cusp, εϕ,ε,cusp). By the inductive assumption, we know that there
exists an irreducible square integrable representation π1 of G1 corresponding to
(πcusp, ϕ1,∆ε1). Denote by δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) the irreducible essentially
square integrable representation of GL(dρ(a + a−)/2, F ), where ρ is a representa-
tion of GL(dρ, F ), which is a unique irreducible subrepresentation of the induced
representation

ν(a−1)/2ρ× ν(a−1)/2−1 × · · · × ν−(a−−1)/2ρ.

It is proved in [M2] (and recalled here) that the induced representation

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π1

has exactly two irreducible subrepresentations, and that these subrepresentations
are not isomorphic. For the proof of the surjectivity of the mapping

π 7→ (πcusp, Jord(π),∆π),

it is enough to prove that these two subrepresentations are square integrable. This
is enough for the following reason. If we know that these subrepresentations are
square integrable, then their parameters must be among those computed in [M2].
They are extensions of ϕ1, ∆ε1 . Since there exist exactly two parameters for G
which extend ϕ1, ∆ε1 in this case, we get that they correspond to these irreducible
square integrable subrepresentations, and one of them must correspond to ϕ, ∆ε.

The square integrability of these irreducible subrepresentations is the most dif-
ficult part of the paper. We first solve the case where π1 is cuspidal in the ninth
section (earlier, in the eighth section we prove a very useful lemma about tempered
representations with the same infinitesimal characters). In section 10, we prove
the square integrability in the case when all the Jacquet modules of π1 have good
properties relative to a and a− (this includes for example the case when a is the
greatest element such that (ρ, a) ∈ Jord). Section 11 completes the proof, arguing
with an inductive argument with respect to a.

In section 12, we discuss very briefly the basic assumption. Section 13 describes
the irreducible tempered representations. Tempered representations can also be
classified with triples as above. We have only to suppress the condition that the
Jord’s are multiplicity free. We have not developed this point of view here, which
is by our basic assumption a direct consequence of Harish-Chandra’s result on the
intertwining algebras. Section 14 proves two exercises which we have mentioned
earlier in this introduction, and gives simple examples of admissible triples. At the
end, sections 15 and 16 explain modifications and comments which are necessary
for the classifications obtained in previous sections, and proofs, to hold for unitary
and even-orthogonal groups.

1. Notation

In this section, first we shall recall some notation for general linear groups (more
details can be found in [Z]).

We fix a local non-archimedean field F . We do not assume any restriction on
the characteristic, but the reader has to be aware that our basic assumption (BA)
has only been verified in [M5]) under the assumption of some Arthur’s conjectures,
which need the hypothesis that the characteristic of the field is 0.
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By F ′ we shall denote in this paper either F or a separable quadratic extension
of F . This will depend on the following: if we are working with symplectic or
orthogonal groups, then F ′ will denote F , and if we are working with unitary
groups, then F ′ will denote the separable quadratic extension which enters the
definition of the unitary groups.

If F ′ is a separable quadratic extension, we shall denote by θ the non-trivial
element of the Galois group Gal(F ′/F ) of F ′ over F . Otherwise (i.e. if F ′ = F ), θ
will denote the identity mapping on F .

The modulus character of F ′ will be denoted by | |F ′ .
By a representation of a reductive group G over F , we shall always mean in this

paper a smooth representation. We denote by R(G) the Grothendieck group of the
category of all representations of G of finite length. There is a natural ordering
≤ on R(G). These orderings also determine natural ordering on a direct sum of
Grothendieck groups of categories, for different reductive groups. For a finite length
representation π of G, we shall denote its semi-simplification by s.s.(τ), and consider
it as an element of R(G). For two finite length representations π1, π2 of G, we will
shorten s.s.(π1) ≤ s.s.(π2) to π1 ≤ π2.

For two representations π1, π2, of general linear groups over F ′, Bernstein and
Zelevinsky defined a parabolically induced representation π1 × π2 in a natural way
(see [Z]). Denote R =

⊕
n≥0 R(GL(n, F ′)). Then × factors in a natural way to

× : R × R → R. The multiplication factors through R ⊗ R in a unique way by a
map, which will be denoted by m : R×R→ R.

Recall that Bernstein and Zelevinsky also defined a comultiplication m∗ : R →
R⊗R using Jacquet modules. We shall briefly recall the definition of m∗ (for more
details see [Z]). For integers 0 ≤ k ≤ n, there exists a unique standard parabolic
subgroup P(k,n−k) = M(k,n−k)N(k,n−k) of GL(n, F ′) whose Levi factor M(k,n−k) is
naturally isomorphic to GL(k, F ′)×GL(n−k, F ′) (the standard parabolic subgroup
is that one which contains the Borel subgroup consisting of an upper triangular in
GL(n, F ′)). The normalized Jacquet module of a finite length representation π of
GL(n, F ′) with respect to P(k,n−k) will be denoted by r(k,n−k)(π). Now one can
view in a natural way

s.s.(r(k,n−k)(π)) ∈ R(GL(k, F ′))⊗R(GL(n− k, F ′)) ⊆ R⊗R.
Define

m∗(π) =
n∑
k=0

s.s.(r(k,n−k)(π)) ∈ R ⊗R.

Extend m∗ additively to a mapping m∗ : R → R ⊗ R. With these two operations,
m and m∗, R is a Hopf algebra. In particular, m∗ is multiplicative (we shall use
this property quite often, very often even without mentioning it).

The character |det|F ′ of GL(n, F ′) will be denoted by ν. For an irreducible
essentially square integrable representation δ of GL(n, F ′), there exist a unique
e(δ) ∈ R and an irreducible unitarizable square integrable representation δu such
that

δ = νe(δ)δu.

Let ρ be an irreducible cuspidal representation of a general linear group (over
F ′). For n ∈ Z+, denote

[ρ, νnρ] = {ρ, νρ, . . . , νnρ}
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(Z+ denotes the set of all non-negative integers). We shall call ∆ = [ρ, νnρ] a
segment (in irreducible cuspidal representations of general linear groups). The
representation ρ×νρ×· · ·×νnρ has a unique irreducible quotient (resp. irreducible
subrepresentation), which we denote by δ(∆) (resp. s(∆)). The representation δ(∆)
is essentially square integrable. For n < 0, we shall assume [ρ, νnρ] to be ∅. We
take δ(∅) = 1 (identity in R, which is the trivial representation of GL(0, F ′)).

We shall recall now some notation for classical p-adic groups. More details
regarding this notation can be found in [MViW] and [T5]. We shall consider the
following series Sn of classical groups over F (and we shall fix one of these series of
classical groups).

Symplectic groups Sp(2n, F ) form a series of groups where n denotes the split
semi-simple rank of the group. The group Sp(2n, F ) will be denoted by Sn. We
have here the notion of the Witt tower (we shall denote by Vn the symplectic space
of dimension 2n in this tower; we shall denote V0 also by Y0 in the case of symplectic
groups).

In the case of odd-orthogonal groups, we also have the Witt tower: this means
that we fix an anisotropic orthogonal vector space Y0 over F of odd dimension (1
or 3), and we look at the Witt tower based on Y0. For each n such that 2n+ 1 ≥
dimY0, there is exactly one space Vn in the Witt tower whose dimension is 2n+ 1.
We denote by Sn the special orthogonal group of this space (recall that in this case
the orthogonal group of Vn is a product of its center and Sn).

In the case of even-orthogonal groups, we fix an anisotropic orthogonal space
Y0 over F of even dimension, and consider the Witt tower based on Y0. If 2n ≥
dimF (Y0), then there is exactly one space Vn in the Witt tower of dimension 2n.
The orthogonal group of Vn will be denoted by Sn.

In the case of symplectic or orthogonal series Sn of groups, F ′ will denote F .
In the case of unitary groups, F ′ will denote a separable quadratic extension of

F . We shall fix an anisotropic unitary space Y0 over F ′, and consider the Witt
tower of unitary spaces Vn based on Y0.

Suppose that dimF ′(Y0) is odd (i.e. 1). Then for each 2n+ 1 ≥ dimF ′(Y0), there
exists a unique space Vn in the Witt tower of dimension 2n+ 1. The unitary group
of this space will be denoted by Sn.

If dimF ′(Y0) is even, then for each 2n ≥ dimF ′(Y0) one takes a unique space Vn
in the Witt tower of dimension 2n, and denotes its unitary group by Sn.

We fix a minimal parabolic subgroup in Sn. We shall consider in this paper
only standard parabolic subgroups, i.e. the parabolic subgroups which contain
the fixed minimal parabolic subgroup. For more information regarding convenient
matrix realizations of groups Sn and for a description of their standard parabolic
subgroups for SO(sn+ 1, F ) and Sp(2n, F ), one can consult [T5].

Fix one of the series Sn of groups that we have defined. Let n′ be the Witt index
of Vn (n′ is n − 1/2 dimF ′(Y0) if Vn is a symplectic or even-orthogonal or even-
unitary group, otherwise n′ is n− 1/2(dimF ′(Y0)− 1)). For each 0 ≤ k ≤ n′, there
exists a standard parabolic subgroup P(k) = M(k)N(k) of Sn, whose Levi subgroup
M(k) is naturally isomorphic to GL(k, F ′)×Sn−k (see [T5] and [B] for the series of
symplectic and split orthogonal groups; the isomorphism in the case of other series
of groups is defined in an analogous way). This parabolic subgroup is the stabilizer
of an isotropic space of dimension k. For representations π and σ of GL(k, F ′) and
Sn−k respectively, the representation parabolically induced by π ⊗ σ is denoted by

π o σ.
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A simple but very useful property of o is that for two representations π1 and π2 of
general linear groups (over F ′) we have

π1 o (π2 o σ) ∼= (π1 × π2)o σ

(see [T5]).
For π as above, denote by π̌

g 7→ π̃(θ(g)),

where π̃ denotes the contragredient representation of π. If π and σ are representa-
tions of finite length, then

s.s.(π o σ) = s.s.(π̌ o σ).

In particular, if π o σ is irreducible, then π o σ ∼= π̌ o σ.
We shall say that a representation π of a general linear group over F ′ is F ′/F -

selfdual if

π ∼= π̌.

If F ′ = F , then we shall also simply say that π is selfdual.
For a representation τ of Sn, we denote the normalized Jacquet module of τ

with respect to P(k) by s(k)(τ). All the Jacquet modules that we shall consider in
this paper will be normalized Jacquet modules with respect to standard parabolic
subgroups (and obvious Levi decompositions).

Denote R(S) =
⊕

R(Sn), where the sum runs over all the groups from the series
Sn of the classical groups that we have fixed (in other words, the sum runs over
all integers n ≥ 1/2 (dimF ′(Y0) − 1) if we consider odd-orthogonal or odd-unitary
groups, and over all n ≥ 1/2 dimF ′(Y0) otherwise). Then o defines in a natural
way a mapping o : R×R(S)→ R(S). Let

µ∗(τ) =
n′∑
k=0

s.s.
(
s(k)(τ

)
),

where τ is an irreducible representation of Sn (n′ is the Witt index of Vn). Extend
µ∗ additively to µ∗ : R(S)→ R⊗R(S).

Let M∗ = (m ⊗ 1) ◦ (ˇ ⊗m∗) ◦ κ ◦m∗ : R → R ⊗ R, where ˇ : R → R is a
homomorphism defined by π 7→ π̌ on irreducible representations, and κ : R×R→
R × R maps

∑
xi ⊗ yi to

∑
yi ⊗ xi. Note that M∗(π) depends also on the series

Sn of the groups that we have fixed.
For a finite length representation π of GL(k, F ′), the component of M∗(π) which

is in R(GL(k, F ′))⊗R(GL(0, F ′)) will be denoted by

M∗GL(π)⊗ 1.

For a finite length representation τ of Sq, µ∗(τ) will denote µ∗(s.s.(τ)). A similar
convention will be used for M∗ and M∗GL.

Let π be a representation of GL(k, F ′) of finite length and let σ be an irreducible
cuspidal representation of Sn. Suppose that τ is a subquotient of π o σ. Then we
shall denote s(k)(τ) also by

sGL(τ).

In the sequel, until the end of section 14, we shall assume that the series of
groups Sn consists of symplectic or odd-orthogonal groups. The main reason for
this restriction is to simplify the exposition in these sections. The proofs for these
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groups apply also to even-orthogonal and unitary groups (the notation that we use
is prepared also for those cases). In sections 15 and 16 we shall describe differences
and comment on the case of unitary and even-orthogonal groups respectively. Recall
that for symplectic and orthogonal groups we have F ′ = F and π̌ = π̃. Nevertheless,
we shall also use in sections 2–14 the notations F ′ and π̌ (instead of F and π,
which we could also use). The reason for this is that with such a choice of notation,
sections 2–14 will also apply to unitary groups, after a few comments, without any
significant changes.

For π ∈ R and σ ∈ R(S) we have

µ∗(π o σ) = M∗(π) o µ∗(σ).(1-1)

For split groups Sn, this follows from Theorems 5.4 and 6.5 of [T5]. For a non-split
odd-orthogonal series of groups Sn, we have the same root system of type B as in
the split case, and the same Weyl group. Now the above formula for non-split odd-
orthogonal groups follows in the same way as in section 6 of [T5]. More precisely,
the calculations in section 4 of [T5] are independent of the groups (but depend on
the root systems), and they imply (an analogue of) Lemma 5.1 for non-split odd-
orthogonal groups. Now formula (1-1) follows from this lemma in completely the
same way as [T5], Theorem 5.2, follows from Lemma 5.1, by a formal computation.∗

Let π be a finite length representation of a general linear group and let τ be a
similar representation of Sn. Then (1-1) implies

s.s.(sGL(π o τ)) = M∗GL(π)× s.s.(sGL(τ))(1-2)

(× in the above formula denotes multiplication in R of M∗(π) with the factors on
the left-hand side of ⊗ in s.s.(sGL(τ))).

In this paper, we shall use formulas for M∗(δ(∆)) and M∗GL(δ(∆)) several times.
We write these formulas here for the segments that we shall consider most often.
Let a−, a ∈ N (N denotes the positive integers). Suppose a− a− ∈ 2N. Let ρ be an
irreducible F ′/F -selfdual cuspidal representation of a general linear group. Then
the formula for m∗(δ(∆)) implies

(1-3) M∗
(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])

)
=

(a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])

× δ([νj+1ρ, ν(a−1)/2ρ])⊗ δ([νi+1ρ, νjρ]).

To get M∗GL, we need to take j = i in the above formula. Thus

(1-4) M∗GL

(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])

)
=

(a−1)/2∑
i=−(a−−1)/2−1

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νi+1ρ, ν(a−1)/2ρ]).

∗The second author is thankful to T. Springer who informed him in 1997 about the paper
“An application of Hopf-algebra techniques to representations of finite classical groups” by Marc

A. A. van Leeuwen (Journal of Algebra 140 (1991), 210–246). In that paper, formula (1-1) is
computed in the case of finite classical groups (Theorem 3.2.1). Note that the formula is simpler
in the finite field case. The reason for this is the cocommutativity of the Hopf algebra attached
to representations of finite general linear groups.
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Denote by γ that part of the sum in (1-4) corresponding to indexes

−(a− − 1)/2− 1 ≤ i ≤ (a− − 1)/2(1-5) (
resp.− (a− − 1)/2− 1 ≤ i ≤ (a− − 1)/2− 1

)
.(1-6)

Then γ satisfies condition (3-9) (resp. (3-10)) of Lemma 3.5.
Finally, we have

(1-7) M∗
(
δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

)
=

(a−−1)/2∑
i′=−(a−−1)/2−1

(a−−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−−1)/2ρ])

× δ([νj
′+1ρ, ν(a−−1)/2ρ])⊗ δ([νi

′+1ρ, νj
′
ρ]).

Clearly, M∗GL
(
δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

)
satisfies condition (3-9) of Lemma 3.5.

2. Invariants of square integrable representations

of classical groups

In this section we shall recall the invariants attached in [M2] to square integrable
representations, and some of their properties.

Let y ∈ N. If we are considering the series of groups Sp(2n) (resp. SO(2n+ 1)),
then Ry will denote the representation of GL(y,C) on ∧2Cy (resp. Sym2Cy).

To any irreducible square integrable representation π of Sn, [M2] associates three
objects:

Jord(π), πcusp and επ.

By definition, (ρ, a) ∈ Jord(π) if and only if ρ is an irreducible F ′/F -selfdual
cuspidal representation of a general linear group GL(dρ, F ′) (this defines dρ) and
a ∈ N such that

a is even if L(ρ,Rdρ , s) has a pole at s = 0, and odd otherwise,(J-1)

and

δ(ρ, a)o π0 is irreducible,(J-2)

where δ(ρ, a) denotes δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).
For an irreducible F ′/F -selfdual cuspidal representation of a general linear group

ρ, denote

Jordρ(π) = {a; (ρ, a) ∈ Jord(π)}.
In the above definition, L(ρ,Rdρ , s) is the L-function defined by Shahidi. We only
need a definition and we do not use any property of the L-functions except in
section 12. Therefore, we could also take L(ρ,Rdρ , s) to be the L-function defined
via the Langlands correspondence on the Galois side. Henniart has announced
recently that both definitions give the same L-function. The basic problem in the
definition of the Jordan block is to give a definition of the parity of a’s for which
(ρ, a) lies in the Jordan block in a such a way that (BA) holds. In [M5] we have
given another definition which depends on the cuspidal support, but which avoids
any use of L-functions (Remark 2.3 of this paper gives one possible definition of the
Jordan block without use of L-functions; further Remark 14.5 is also along these
lines).
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Let πcusp be an irreducible cuspidal representation of some Sq and let ρ be an
irreducible F ′/F -selfdual cuspidal representation of a general linear group. In this
paper we shall assume that the following basic assumption holds:

ν±(aρ+1)/2ρo πcusp reduces for(BA)

aρ =


max Jordρ(πcusp) if Jordρ(πcusp) 6= ∅,
0 if L(ρ,Rdρ, s) has a pole at s = 0 and Jordρ(πcusp) = ∅,
−1 otherwise;
moreover, there are no other reducibility points in R.

Note that a part of the assumption (BA) is that Jordρ(πcusp) are finite sets. An
additional comment regarding this conjecture can be found in section 12.

The partial cuspidal support of π, πcusp, is defined to be the cuspidal irreducible
representation of Sn′ , with n′ ≤ n, such that there exist an irreducible representa-
tion σ of GL(n− n′, F ′) and an embedding

π ↪→ σ × πcusp.
Note that the notion of partial cuspidal support is well defined in this way for any
irreducible representation of Sn.

Let π be an irreducible square integrable representation of Sn and let πcusp be the
partial support of π, where πcusp is a cuspidal representation of some Sn′ (n′ ≤ n).
We know that the following inequality holds:∑

(ρ,a)∈Jord(πcusp)

a dρ ≤
{

2n′ if Sn′ = SO(2n′ + 1),
2n′ + 1 if Sn′ = Sp(2n).

(A)

This inequality has been proved recently by elementary methods without assuming
any hypothesis (see Corollary 4.3 of [M5]). Let us note that it is expected that the
equality holds in (A). To prove the equality, it remains to prove the other inequality.
A difficult problem would be to prove this other inequality ≥ in (A). Using (BA)
it is proved in [M2] that∑

(ρ,a)∈Jord(π)

a dρ −
∑

(ρ′,a′)∈Jord(πcusp)

a′dρ′ = 2(n− n′)(2-1)

(see 4.1 and 4.2 there). Now (A) and (2-1) imply that Jord(π) is finite. This is not
a very deep result. In fact, we hope that for an irreducible cuspidal representation π
and an odd-orthogonal group G, Jord(π) determines π (this is proved in some very
special cases in [M5]). The first information that we would need in that direction
is that Jord(π) is big enough!

At the end, [M2] associates to π a partially defined function επ from Jord(π0)
into {±1} (we shall explain below precisely what we mean by partially defined
function). The definition of επ is in terms of Jacquet modules of π, except in one
case, in which normalized intertwining operators are used. Let (ρ, a) ∈ Jord(π).
Assume that there exists a′ such that (ρ, a′) ∈ Jord(π) and a′ < a. Let a− be the
biggest possible such a′. In that case, we define:

επ(ρ, a)επ(ρ, a−) = 1 ⇔ there exists a representation π′ of Sn−(a−a−)/2

such that π ↪→ δ([ν(a−+1)/2ρ, ν(a−1)/2ρ])× π′.
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This is the most important property of επ. With such a definition, we can formally
define επ(ρ, a)επ(ρ, a′)−1 ∈ {±1} for all ρ, a, a′ such that (ρ, a), (ρ, a′) ∈ Jord(π).
Of course if a = a′, then the number is 1. If (ρ, a) ∈ Jord(π) and a is even, then
we put formally επ(ρ, 0) = 1 and allow a′ = 0 in the above construction. In this
way, επ(ρ, a) is defined for all a even. There is one case of odd a where we can
and do define επ(ρ, a): it is the case where ρ is such that there exists a odd with
(ρ, a) ∈ Jord(π) but there does not exist b such that (ρ, b) ∈ Jord(πcusp) (πcusp is
the partial cuspidal support of π). In this case the definition is not canonical. Now
(BA) in this case implies that the induced representation ρ× πcusp is reducible. It
reduces in the sum of two inequivalent irreducible subrepresentations. We choose
one of those irreducible subrepresentations. After this choice, we can define επ(ρ, a)
for any a such that (ρ, a) ∈ Jord(π). This is done in [M2] (beginning of section 6).
In this way επ(ρ, a)επ(ρ, a′)−1 is defined for all (ρ, a, a′) such that (ρ, a), (ρ, a′) ∈
Jord(π). Further επ(ρ, a) is defined if (ρ, a) ∈ Jord(π) and a is even, or a odd but
there does not exists b such that (ρ, b) ∈ Jord(πcusp).

In [M2] it is proved that Jord(π0), πcusp, επ0 form an admissible triple. A general
definition of an admissible triple will be recalled below. The fundamental result of
[M2] (see section 7 of [M2]) is that the mapping

π 7→ (Jord(π), πcusp, επ)(2-2)

is an injective mapping from the set of all equivalence classes of irreducible square
integrable representations of groups Sn into the set of all admissible triples (assum-
ing that (BA) holds). Before we give the definition of an admissible triple, we shall
give two remarks which are related to the admissibility condition.

The first one is a result which we shall use later, which tells us that, for an
irreducible cuspidal representation πcusp of Sn, the following holds:

(ρ, a) ∈ Jord(πcusp) and a > 2 ⇒ (ρ, a− 2) ∈ Jord(πcusp).(2-3)

In [M1] this assertion and (BA) are obtained simultaneously as consequences of
some Arthur’s conjectures. One can check easily that (BA) implies (2-3) (one can
find the proof of this implication in section 12). In fact, (2-3) follows from the
fact that there is only one reducibility point in {x ∈ R;x ≥ 0} in the case of the
parabolic induction from a maximal parabolic subgroup by an irreducible cuspidal
representation.

For an irreducible square integrable representation π of Sn define the multiset

Supp(Jord(π)) =
∑

(ρ,a)∈Jord(π)

[ν−(a−1)/2ρ, ν(a−1)/2ρ]

(multiset means that elements are counted with multiplicity; see [Z]). It is evident
how to reconstruct Jord(π) from the multiset Supp(Jord(π)). Now

Supp(Jord(πcusp)) ⊆ Supp(Jord(π)).(2-4)

The above inclusion follows from the admissibility of the triple (Jord(π), πcusp, επ).
Now we shall define the notion of an admissible triple.
Fix an irreducible cuspidal representation πcusp of some Sq. Let Jord be a finite

set of pairs (ρ, a), where ρ are F ′/F -selfdual irreducible cuspidal representations of
general linear groups and a ∈ N is such that condition (J-1) holds for each of these
pairs. We shall say that Jord has degree n if (2-1) holds (the sum in (2-1) runs
over Jord instead of Jord(π)). We define the multiset Supp(Jord) in the same way
as we did for Jord(π). For an F ′/F -selfdual irreducible cuspidal representation ρ
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of a general linear group, one defines Jordρ = {a; (ρ, a) ∈ Jord}. For a ∈ Jordρ we
denote

a− = max {b ∈ Jordρ; b < a},
if {b ∈ Jordρ; b < a} 6= ∅ (and then we say that a− exists, or that it is defined).
Otherwise, we shall say that a does not have a−, or that a is minimal in Jordρ.

Let ε be a partially defined function from a subset of Jord ∪ (Jord× Jord) into
{±1} in the following sense. For (ρ, a) ∈ Jord, ε(ρ, a) is not defined if and only if
a is odd and (ρ, a′) ∈ Jord(πcusp) for some a′ ∈ N. Further ε is defined on a pair
(ρ, a), (ρ′, a′) ∈ Jord if and only if ρ = ρ′ and a 6= a′.

We shall require that ε satisfies the following properties. Let (ρ, a), (ρ, a′) ∈
Jord, a 6= a′. If ε(ρ, a) is defined, then ε on this pair has the value

ε(ρ, a)ε(ρ, a′)−1.

If ε(ρ, a) is not defined, then we shall also formally denote the value of ε on this
pair by ε(ρ, a)ε(ρ, a′)−1 (although ε(ρ, a) and ε(ρ, a′) are not defined). In this case
(when ε(ρ, a) is not defined), for different a, a′, a′′ ∈ Jordρ we require that

ε(ρ, a)ε(ρ, a′′)−1 =
(
ε(ρ, a)ε(ρ, a′)−1

) (
ε(ρ, a′)ε(ρ, a′′)−1

)
(recall that the notation in the above formula is formal). In this case, we also
require for different a, a′ ∈ Jordρ:

ε(ρ, a)ε(ρ, a′)−1 = ε(ρ, a′)ε(ρ, a)−1.

In the case that ε(ρ, a)ε(ρ, a′)−1 6= 1 (resp. ε(ρ, a)ε(ρ, a′)−1 = 1), we shall write
formally

ε(ρ, a) 6= ε(ρ, a′) (resp. ε(ρ, a) = ε(ρ, a′)),

even if ε(ρ, a) and ε(ρ, a′) are not defined.
Suppose that we have the triple Jord, πcusp, ε as above. Let (ρ, a) ∈ Jord be

such that a− ∈ Jordρ is defined and

ε(ρ, a) = ε(ρ, a−).

Denote Jord′ = Jord \ {a, a−}. Let ε′ be the partially defined function on Jord′

which we get by restricting ε to Jord′. Then ε′ again satisfies the above require-
ments with respect to Jord′ and πcusp. If we have two triples Jord, πcusp, ε and
Jord′, πcusp, ε

′ as above, then we shall say that Jord′, πcusp, ε′ is subordinated to
Jord, πcusp, ε.

Let Jord, πcusp, ε be a triple as above. For (ρ, a) ∈ Jord denote

Jord′ρ(πcusp) =

{
Jordρ(πcusp) ∪ {0} if a is even and ε(ρ,min Jordρ) = 1,
Jordρ(πcusp) otherwise.

The two notations Jord′ and Jord′(πcusp) will not be used simultaneously, to avoid
confusion.

Now we shall define the admissible triple. Let Jord, πcusp, ε be a triple as above.
First we have the following definition.

We shall say that Jord, πcusp, ε is an admissible triple of alternated type if for
each (ρ, a) ∈ Jord the following two conditions hold:

ε(ρ, a) 6= ε(ρ, a−) if a− is defined, and(2-5)

cardJord′ρ(πcusp) = cardJordρ.(2-6)



730 COLETTE MŒGLIN AND MARKO TADIĆ

We shall say that a triple Jord, πcusp, ε is admissible, if there exists a sequence
of triples Jordi, πcusp, εi, 1 ≤ i ≤ k, such that

(Jord, πcusp, ε) = (Jord1, πcusp, ε1),
Jordi+1, πcusp, εi+1 is subordinated to Jordi, πcusp, εi for 1 ≤ i ≤ k − 1, and
Jordk, πcusp, εk is an admissible triple of alternated type.

An admissible triple which is not of alternated type will be called an admissible
triple of mixed type.

Suppose that Jord, πcusp, ε is an admissible triple of alternated type. Then (2-6)
implies that for each (ρ, a) ∈ Jord there exists a unique monotone bijection

φρ : Jordρ → Jord′ρ(πcusp).(2-7)

We shall prove that to each admissible triple Jord, πcusp, ε of degree n there is
attached an irreducible square integrable representation π of Sn with that invariant,
i.e. that (Jord(π), πcusp, επ) = (Jord, πcusp, ε) (where πcusp is the partial cuspidal
support of π).

To illustrate the notion of Jord(π), we shall now give a proposition which is
the basic method for computing Jord(π) from Jord(πcusp). This result is already
contained in [M2]. It will be used several times in the sequel.

2.1. Proposition. Let π′ be an irreducible square integrable representation of Sq
and let x, y ∈ (1/2)Z such that x − y ∈ Z+. Let ρ be an F ′/F -selfdual cuspidal
unitarizable representation of GL(dρ). We assume that x, y ∈ Z if and only if
L(ρ,Rdρ, s) has no pole at s = 0 (see the beginning of this section for the definition of
Rdρ). Further, suppose that there is an irreducible square integrable representation
π embedded in the induced representation

π ↪→ νxρ× · · · × νx−i+1ρ× · · · × νyρ× π′.(2-8)

Then:
(i) If y > 0, then 2y − 1 ∈ Jordρ(π′) and

Jordρ(π) = (Jordρ(π′) \ {(ρ, 2y − 1)}) ∪ {(ρ, 2x+ 1)}.

(ii) If y ≤ 0 , then

Jordρ(π) = Jordρ(π′) ∪ {(ρ, 2x+ 1), (ρ,−2y + 1)}.

In particular, 2x+ 1 and −2y + 1 are not in Jordρ(π′).

2.2. Remark. If x does not satisfy the condition regarding the holomorphy of the
L-function of the proposition, then (ρ, 2x + 1) and (ρ, 2y + 1) are not in Jordρ(π)
and Jordρ(π′) by the definition of the Jordan blocks. Further, in this case, the
embedding (2-8) cannot happen (recall that π′ and π are square integrable).

Proof. To compute Jordρ(π) in terms of Jordρ(π′), we have to compare Plancherel
measures. For z ∈ (1/2)N, we denote by µ(z, π)(s) the meromorphic function (in
s ∈ C), which is the composite of two standard intertwining operators:

νsδ(ρ, z)o π′ → ν−sδ(ρ, z)o π′ → νsδ(ρ, z)o π′

(here δ(ρ, z) denotes δ([ν−(z−1)/2ρ, ν(z−1)/2ρ]), as before). We are interested in
µ(z, π)(s) modulo holomorphic invertible functions of s only. We define µ(z, π′)(s)
in an analogous way for π′. By the results of Shahidi, the computation of the
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standard intertwining operators for GL(d) is very well known for arbitrary d. This
gives the following equality modulo a holomorphic invertible function of s:

µ(z, π)(s) = µ(z, π′)(s)

L(δ(ρ, z)× ρ, s− x) L(δ(ρ, z)× ρ, s− y + 1)−1(2-9)

L(δ(ρ, z)× ρ, y + s) L(δ(ρ, z)× ρ, x+ s+ 1)−1

L(δ(ρ, z)× ρ,−s− x) L(δ(ρ, z)× ρ,−s− y + 1)−1(2-10)

L(δ(ρ, z)× ρ, y − s) L(δ(ρ, z)× ρ, x− s+ 1)−1.

The product of L-functions is just the product of the normalizing factors in the
intertwining operator corresponding to GL’s factors. Usual simplifications are used
to get this formula (see [MW], I). By a general result of Harish-Chandra ([W1])
we know that at s = 0, µ(z, π) has order 0 or 2. Moreover, by the definition of
Jordρ(π):

z ∈ Jordρ(π)⇔ ords=0(µ(z, π)) = 2.

We need to look at the different L-factors using a general result of [JPSS] (Theorem
8.2 there):

L(δ(ρ, z)× ρ, s′) = L(ρ× ρ, s′ + (z − 1)/2).

For s′′ ∈ R, the function L(ρ×ρ, s′′) is non-zero and the only pole here is at s′′ = 0.
The pole is simple. It is obvious that at s = 0, (2-9) and (2-10) above have the
same order.

Now s = 0 is a pole for µ(z, π)(s) if and only if either it is a pole of µ(z, π′)(s)
and not a zero of the factor (2-9) or it is a pole of the factor (2-9). Moreover, if
s = 0 is a pole of the factor (2-9), it cannot be a pole for µ(z, π′)(s) by the result
of Harish-Chandra.

To prove the lemma, we first need to observe the following facts:

L(δ(ρ, z)× ρ, s− x)

has a (simple) pole at s = 0 if and only if x = (z − 1)/2;

L(δ(ρ, z)× ρ, s− y + 1)−1

has a (simple) zero at s = 0 if and only if y − 1 = (z − 1)/2;

L(δ(ρ, z)× ρ, y + s)

has a (simple) pole at s = 0 if and only if y = −(z − 1)/2;

L(δ(ρ, z)× ρ, x+ s+ 1)−1

has a (simple) zero at s = 0 if and only if x+ 1 = −(z − 1)/2 (this cannot happen
since x+ 1 = −(z − 1)/2 implies z = −2x− 1 ≤ −2, which is impossible).

These observations imply that 2x + 1 ∈ Jordρ(π) and 2x + 1 /∈ Jordρ(π′).
Further, a′ 6= 2x + 1 is an element of Jordρ(π′) if and only if it is an element of
Jordρ(π), except if a′ = −2y+1 (which implies y ≤ 0) or a′ = 2y−1 (which implies
y > 0). In the case a′ = −2y + 1, we have a′ /∈ Jordρ(π′) but a′ ∈ Jordρ(π). The
case a′ = −2y + 1 gives that a′ /∈ Jordρ(π) and a′ ∈ Jordρ(π′), to avoid a zero of
µ(a′, π)(s) at s = 0.
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2.3. Remark. In this remark we shall suppose that Sn is the split group Sp(2n, F )
or SO(2n+ 1, F ).

(i) By [Sh1], the condition (J-1) is equivalent to

(J-1′) a is even if ν1/2ρo 1 reduces and odd otherwise

(i.e. if ρo 1 or νρo 1 reduces).

(ii) If a > 1, then by the fourth section of [T2], (J-1) is equivalent to the fact
that

δ(ρ, a)o 1 reduces

(here, 1 denotes the trivial representation of S0).

3. General technical lemmas

In this section we shall collect some facts from representation theory. Most of
the results are for classical groups. Some of them are very simple and well known.
First we shall recall of the following simple fact.

3.1. Lemma (see [B-Z], 2.4). Let σ be an irreducible cuspidal subquotient of a
Jacquet module rGM (π) of an irreducible representation π of a connected reductive
p-adic group G with respect to a parabolic subgroup P = MN of G. Then

π ↪→ IndGP (σ).

Proof. By Frobenius reciprocity, we have to prove that σ is a quotient of the Jacquet
module of π relative to P . This Jacquet module, denoted πP , is a representation
of finite length of M . Bernstein has proved that one can decompose such a repre-
sentation into a direct sum of representations:

πP = πP [σ]⊕ π′P ,
where all irreducible subquotients of πP [σ] are isomorphic to σ and no irreducible
subquotient of π′P is isomorphic to σ. By hypothesis, πP [σ] is non-zero. From this
it follows that σ is a quotient of πP [σ] and of πP . The lemma is proved.

3.2. Lemma. Let π be an irreducible representation of a reductive p-adic group
and let P = MN be a parabolic subgroup of G. Suppose that M is a direct product
of two reductive subgroups M1 and M2. Let τ1 be an irreducible representation of
M1 and let τ2 be a representation of M2. Suppose

π ↪→ IndGP (τ1 ⊗ τ2).

Then there exists an irreducible representation τ ′2 such that

π ↪→ IndGP (τ1 ⊗ τ ′2).

Proof. First note that there is a non-zero intertwining morphism from the Jacquet
module rGM (π) of π (with respect to P = MN) into τ1 ⊗ τ2. The image X has a
finite length as a representation of M . Therefore, X has an irreducible quotient,
say τ ′1 ⊗ τ ′2. To see the lemma, it is enough to show τ ′1

∼= τ1.
Now τ1 ⊗ τ2 (resp. τ ′1 ⊗ τ ′2) is, as a representation of M1, a sum of copies of

τ1 (resp. τ ′1). From the existence of a non-zero M1-intertwining morphism from
the subspace X of τ1 ⊗ τ2 into τ ′1 ⊗ τ ′2, we get τ ′1 ∼= τ1 (since X is a semi-simple
representation of M1, and it is isomorphic to a direct sum of copies of τ1).
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3.3. Lemma. Let π be an irreducible representation of Sq. The following three
sets of irreducible cuspidal representations τ of general linear groups coincide.

(1) The set of all τ for which there exists an irreducible subquotient σ ⊗ πcusp
of sGL(π), such that τ is in the support of σ (the support is defined in Proposition
1.10 of [Z]).

(2) The set of all τ such that there exists an irreducible cuspidal subquotient
ρ1 ⊗ · · · ⊗ ρk ⊗ σ of a standard Jacquet module of π and index i such that τ ∼=
ρi (standard Jacquet module means that it is a Jacquet module with respect to a
standard parabolic subgroup).

(3) The set of all τ such that there exist irreducible cuspidal representations
ρ1, . . . , ρk and σ of general linear groups and of some Sq′ respectively, and an index
i such that

π ↪→ ρ1 × · · · × ρk o σ(3-1)

and τ ∼= ρi.
Irreducible cuspidal representations of general linear groups characterized by one

of the above descriptions will be called factors of π.

Proof. For i = 1, 2, 3, denote the set described in (i) by Xi. Proposition 1.10 of [Z]
and induction in stages imply X1 ⊆ X2. The transitivity of Jacquet modules and
the definition of the support in Proposition 1.10 of [Z] imply X2 ⊆ X1. Frobenius
reciprocity implies X3 ⊆ X2. At the end, X2 ⊆ X1 follows from Lemma 3.1.

The following lemma is essentially a claim about the representations of general
linear groups.

3.4. Lemma. Let π be an irreducible representation of Sq and let τ be a factor of
π such that ν−1τ is not a factor of π.

(i) Then there exists z ∈ Z+ and an irreducible representation σ of some Sq′ ,
q′ < q, such that

π ↪→ δ([τ, νzτ ])o σ.

(ii) Let ρ′1 ⊗ ρ′2 ⊗ · · · ⊗ ρ′l ⊗ πcusp be an irreducible cuspidal subquotient of a
Jacquet module of π, such that τ ∼= ρ′j′ . Suppose that there exists j ∈ Z+ such that
νj+1τ 6∼= ρ′i for all i < j′. Then one can find an embedding in (i) for which z ≤ j.

(iii) Let ρ′1 ⊗ ρ′2 ⊗ · · · ⊗ ρ′l ⊗ πcusp be an irreducible cuspidal subquotient of a
Jacquet module of π. Suppose that τ ∼= ρ′m for some m. Then there exist k ∈ Z+,
k ≤ m− 1, and irreducible cuspidal representations ρi, k + 2 ≤ i ≤ l, such that

(1) π ↪→ δ([τ, νkτ ])× ρk+2 × · · · × ρl o πcusp;
(2) ρ′i

∼= ρi for m+ 1 ≤ i ≤ l;
(3) νkτ, νk−1τ, . . . , τ, ρk+2, ρk+3, . . . , ρm is a permutation of ρ′1, ρ

′
2, . . . , ρ

′
m.

Proof. Obviously, (ii) implies (i). Now we shall show that (iii) implies (ii). Suppose
that we have proved (iii). Applying (iii) to (ii) for m = j′, we get π ↪→ δ([τ, νkτ ])×
ρk+2 × · · · × ρl o πcusp, where (ii) and (iii) imply k ≤ j. Now Lemma 3.2 implies
(ii).

It remains to prove (iii). We shall do it now.
Look at all possible embeddings like

π ↪→

 l∏
j=1

ρj

o πcusp(3-2)
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such that (2) and (3) hold. By Lemma 3.1, there exists at least one such embedding.
For such an embedding, we know that ρi ∼= τ for at least one i ≤ j. Among all such
embeddings, choose one with minimal possible index i such that ρi ∼= τ . Clearly,
i ≤ m. The condition of the lemma implies

ρj 6∼= ν−1ρi for 1 ≤ j ≤ i− 1.(3-3)

Denote

π′ =

 l∏
j=i+1

ρj

o πcusp and τ =

 l⊗
j=i+1

ρj

⊗ πcusp.
Let j′ ∈ {0, 1, . . . , i− 1} be maximal such that

ρi−j = νjρi for j = 0, 1, . . . , j′,(3-4)

and

π ↪→

i−j′−1∏
j=1

ρj

× δ([ρi, νj′ρi])o π′.(3-5)

Clearly, there is at least one such j′ ≥ 0 satisfying (3-4) and (3-5) (it is j′ = 0). We
shall prove j′ = i− 1. This will complete the proof of the lemma.

Suppose j′ < i−1. Look at ρi−j′−1. If ρi−j′−1× δ([ρi, νj
′
ρi]) is irreducible, then

ρi−j′−1 × δ([ρi, νj
′
ρi]) ∼= δ([ρi, νj

′
ρi]) × ρi−j′−1. This would imply the existence

of an embedding of π like in (3-2), with ρi at the (i − 1)-th place. Therefore,
ρi−j′−1× δ([ρi, νj

′
ρi]) reduces. There are two possibilities for that. The possibility

ρi−j′−1
∼= ν−1ρi cannot happen by the assumption of the lemma. Thus,

ρi−j′−1 = νj
′+1ρi.(3-6)

This implies that (3-4) holds for j′ + 1. Further, (3-5), (3-6) and the Frobenius
reciprocity imply that we have a non-zero intertwining φ from the corresponding
Jacquet module rSqM (π) of π intoi−j′−2⊗

j=1

ρj

⊗ νj′+1ρi × δ([ρi, νj
′
ρi])⊗ τ.(3-7)

Note that (3-7) is a length two representation with a unique irreducible subrepre-
sentation, which is

(⊗i−j′−2
j=1 ρj

)
⊗ δ([ρi, νj

′+1ρi]) ⊗ τ . Since j′ is maximal, the
image of φ cannot be this irreducible subrepresentation (otherwise, Frobenius reci-
procity would imply that (3-5) holds also for j′ + 1, and this would contradict
the assumption that j′ is maximal, since we have seen already that (3-4) holds for
j′ + 1). Therefore, the image is the whole (3-7). From this (and transitivity of
Jacquet modules) we conclude thati−j′−2⊗

j=1

ρj

⊗ δ([ρi, νj′ρi])⊗ νj′+1ρi ⊗ τ

is a subquotient of a corresponding Jacquet module of π. Now Lemma 3.1 implies
that ρi can show up in embeddings like (3-2) at the (i−1)-th place, which contradicts
our choice of i. This contradiction ends the proof that j′ = i− 1.
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Now we shall recall the notion of a strongly positive (or strictly positive) irre-
ducible representation of Sq, defined in [M2]. One says that π is strongly positive
if for any factor τ of π we have

e(τ) > 0.

Casselman’s square integrability criterion implies that each strongly positive irre-
ducible representation is square integrable.

In this paper, we shall use the following several times.

3.5. Lemma. Let π and τ be irreducible representations of Sq and Sq′ respec-
tively. Suppose that τ is tempered (resp. square integrable) and q > q′. Let γ be a
representation of GL(q − q′, F ′) of finite length. Suppose

sGL(π) ≤ γ × sGL(τ),(3-8)

and suppose that for each irreducible cuspidal subquotient ρ1⊗· · ·⊗ρk of a standard
Jacquet module (with respect to the subgroup of upper triangular matrices; see [Z])
of γ, we have

j∑
i=1

e(ρi)dρi ≥ 0(3-9)

(
resp.

j∑
i=1

e(ρi)dρi > 0
)

(3-10)

for all j = 1, . . . , k (recall that dρi is defined by the condition that ρi is a represen-
tation of GL(dρi , F ′)). Then π is tempered (resp. square integrable).

Proof. First note πcusp = τcusp. Further, (3-8) implies that for each irreducible
cuspidal subquotient

ρ1 ⊗ · · · ⊗ ρn ⊗ πcusp(3-11)

of a standard Jacquet module of π, there exists a partition of {1, . . . , n} into two
subsets

i1 < i2 < · · · < il and j1 < j2 < · · · < jm,

such that

ρi1 ⊗ · · · ⊗ ρil
is a subquotient of a standard Jacquet module of γ and

ρj1 ⊗ · · · ⊗ ρim ⊗ πcusp
is a subquotient of a standard Jacquet module of τ . Then transitivity of Jacquet
modules implies that ρj1 ⊗ · · · ⊗ ρim ⊗ πcusp is a subquotient of a standard Jacquet
module of sGL(τ).

By Casselman’s square integrability criterion and the description of the positive
simple roots in the case of classical groups, π is square integrable if and only if for
each subquotient (3-11) we have

j∑
i=1

e(ρi) dρi > 0 for every j = 1, . . . , n.(3-12)

For details of Casselman’s square integrability criterion in the symplectic case one
can see section 6 of [T6] (the case for SO(2k + 1, F ) goes completely in the same
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way; see [T5] for roots in this case). Suppose that τ is square integrable and γ
satisfies (3-10). Then (3-10), square integrability criterion (3-12) applied to τ , and
the above description of the subquotients (3-11) in terms of Jacquet modules of γ
and τ imply that π is square integrable. In the same way one proves the claim of
the lemma in the tempered case.

Now we shall write a direct consequence of 5.1.2 from [M2].

3.6. Lemma. Suppose that π is an irreducible square integrable representation of
Sq. Let νxρ ⊗ τ be an irreducible subquotient of a standard Jacquet module of π,
where ρ is an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′), x ∈ R,
and τ is an irreducible representation of Sq′ . Then

(ρ, 2x+ 1) ∈ Jord(π).

Proof. Take irreducible cuspidal representations ρ1, . . . , ρl and σ of general linear
groups and (some) Sq′′ respectively, such that

τ ↪→ ρ1 × · · · × ρl o σ.

By the transitivity of Jacquet modules (and the Frobenius reciprocity), νxρ⊗ ρ1×
· · · ⊗ ρl ⊗ σ is a(n irreducible cuspidal) subquotient of a standard Jacquet module
of π. Lemma 3.1 implies

π ↪→ νxρ× ρ1 × · · · × ρl o σ.
Lemma 3.2 implies the existence of an irreducible representation τ ′ such that

π ↪→ νxρo τ ′.

Now 5.1.2 of [M2] implies the lemma.

4. On irreducible subrepresentations

In this section we shall present some facts related to irreducible subrepresenta-
tions and their uniqueness. These facts shall be used frequently later.

4.1. Lemma. Let n be a non-zero integer, let ρ be an irreducible cuspidal F ′/F -
selfdual representation of a general linear group and let πcusp be an irreducible
cuspidal representation of Sq. Suppose that α, β : {1, . . . , n} → R are functions
which satisfy

β(i)− α(i) ∈ Z+ for all i,(4-1)

α(i) > 0 for all i, and(4-2)

β(1) < β(2) < · · · < β(n).(4-3)

Then the representation (
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)
o πcusp

has a unique irreducible subrepresentation.

Proof. For the proof of the lemma (by Frobenius reciprocity) it is enough to show
that the multiplicity of (

n⊗
i=1

δ([να(i)ρ, νβ(i)ρ])

)
⊗ πcusp(4-4)
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in the corresponding standard Jacquet module of
(∏n

i=1 δ([ν
α(i)ρ, νβ(i)ρ])

)
o πcusp

is one.
For a moment suppose that τ1, τ2, . . . , τ` are finite length representations of gen-

eral linear groups. Then (1-2), applied (several times) to τ1 × τ2 × · · · × τ` o πcusp,
gives

s.s.(sGL(τ1 × τ2 × · · · × τ` o πcusp))
= M∗GL(τ1)×M∗GL(τ2)× · · · ×M∗GL(τ`)⊗ πcusp

since πcusp is cuspidal. Now applying this observation to
(∏n

i=1 δ([ν
α(i)ρ, νβ(i)ρ])

)
o

πcusp and using formula (1-4) we get

s.s.

(
sGL

((
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)
o πcusp

))

=

 n∏
i=1

 β(i)+1∑
ji=α(i)

δ([νjiρ, νβ(i)ρ])× δ([ν−ji+1ρ, ν−α(i)ρ])

⊗ πcusp.
The above formula also follows from an explicit description of Jacquet modules
of parabolically induced representations in 1.3 of [B-Z] (after some computation).
Now (4-2) and the above formula imply that it is enough to see that the multiplicity
of (4-4) in a corresponding Jacquet module of

(∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ])
)
⊗ πcusp is

one (since to get (4-4) for a subquotient of a corresponding Jacquet module of a
term in the above formula, one needs to take ji = α(i) for all i, by (4-2)). To see
this, it is enough to show that the multiplicity of

n⊗
i=1

δ([να(i)ρ, νβ(i)ρ])(4-5)

in a corresponding Jacquet module of
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

is one.
Note that the multiplicativity of m∗ (recall that R is a Hopf algebra) implies

(4-6) m∗

(
n∏
i=1

δ([να(i)ρ, νβ(i)ρ])

)

=
n∏
i=1

 β(i)∑
ji=α(i)−1

δ([νji+1ρ, νβ(i)ρ])⊗ δ([να(i)ρ, νjiρ])

 .

Let
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) and δ([να(i)ρ, νβ(i)ρ]) be representations ofGL(p′, F ′)
and GL(ki, F ′), respectively.

Now we shall show that the multiplicity of
⊗n

i=1 δ([ν
α(i)ρ, νβ(i)ρ]) in a corre-

sponding Jacquet module of
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) is one, by induction with re-
spect to n. For n = 1 the claim obviously holds. Suppose n > 1.

We shall compute the multiplicity of
⊗n

i=1 δ([ν
α(i)ρ, νβ(i)ρ]) in a corresponding

Jacquet module of
∏n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]) using (4-6) and transitivity of Jacquet
modules. First we consider the Jacquet module with respect to GL(p′ − kn, F ′) ×
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GL(kn, F ′). To get
⊗n

i=1 δ([ν
α(i)ρ, νβ(i)ρ]) for a subquotient of a corresponding

Jacquet module of a term in (4-6), we must take jn = β(n) (note that νβ(n)ρ shows
up in the support of the last tensor factors of

⊗n
i=1 δ([ν

α(i)ρ, νβ(i)ρ]), and then use
(4-3)). Therefore, δ([να(n)ρ, νβ(n)ρ]) shows up on the right-hand side of ⊗. Since we
are considering the Jacquet module with respect to GL(p′−kn, F ′)×GL(kn, F ′), we
must have ji = α(i)− 1 for 1 ≤ i ≤ n− 1. Now applying the inductive assumption
in the case of n− 1, we get the claim for n.

The following evident fact will be used a number of times.

4.2. Remark. Let π and π′ be representations of finite length. Suppose that π has
at most n irreducible subrepresentations. Let π′ ↪→ π. Then π′ also has at most n
irreducible subrepresentations.

The following lemma holds in a much bigger generality.

4.3. Lemma. Let π be an irreducible square integrable representation of Sq and let
ρ be an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Let α, β ∈
(1/2)Z+. Then:

(i) The multiplicity of δ([ν−αρ, ναρ])⊗ π in µ∗(δ([ν−αρ, ναρ])o π) is 2.
(ii) Suppose β > α. Then the multiplicity of δ([ν−βρ, νβρ])⊗ δ([ν−αρ, ναρ])⊗ π

in a corresponding Jacquet module of δ([ν−βρ, νβρ])× δ([ν−αρ, ναρ])o π is 4.

Proof. We have

(4-7) µ∗
(
δ([ν−αρ, ναρ])o π

)
=
( α∑
i=−α−1

α∑
j=i

δ([ν−iρ, ναρ])× δ([νj+1ρ, ναρ])⊗ δ([νi+1ρ, νjρ])
)
o µ∗(π).

If i = j in (4-7), then we get directly that δ([ν−αρ, ναρ])⊗ π can be a subquotient
only if i = −α− 1 and α. In each term the multiplicity is one (each of these terms
is just δ([ν−αρ, ναρ])⊗ π).

Suppose that we can get δ([ν−αρ, ναρ])⊗ π from a term corresponding to i < j.
Then −α− 1 ≤ i < j implies j + 1 > −α. Also −i > −α (if −i = −α, then i = α
and thus j = i = α which contradicts i < j). Thus ν−αρ must come from µ∗(π).
From the above discussion and (4-7) we get that δ([ν−αρ, να−kρ]) ⊗ τ ≤ µ∗(π) for
some k ∈ Z+, k ≤ 2α. Casselman’s square integrability criterion implies that π is
not square integrable. This contradiction completes the proof of (i).

Suppose α < β. Write

(4-8) µ∗
(
δ([ν−βρ, νβρ])× δ([ν−αρ, ναρ])o π

)
=
( β∑
i=−β−1

β∑
j=i

δ([ν−iρ, νβρ])× δ([νj+1ρ, νβρ])⊗ δ([νi+1ρ, νjρ])
)

×M∗(δ([ν−αρ, ναρ]))o µ∗(π).

We analyze when one can get δ([ν−βρ, νβρ])⊗τ for a subquotient of (4-8) (where
τ is an arbitrary irreducible representation). One can get it for i = j = −β − 1
or β, and these are the only cases when one can get it if i = j. Then the corre-
sponding term in the above sum is δ([ν−βρ, νβρ])⊗M∗(δ([ν−αρ, ναρ]))o µ∗(π) =
δ([ν−βρ, νβρ]) ⊗ µ∗(δ([ν−αρ, ναρ]) o π). Now (i) tells us that the multiplicity of
δ([ν−βρ, νβρ])⊗ δ([ν−αρ, ναρ])⊗π in each of these two terms is two. Therefore, to
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prove (ii), one needs to show that one cannot get δ([ν−βρ, νβρ])⊗τ for a subquotient
of (4-8) if i < j.

Suppose that we can get it for some i < j. We shall now have similar arguments
as in the proof of (i). To get δ([ν−βρ, νβρ]) ⊗ τ , one needs to get ν−βρ on the
left-hand side of ⊗. Note that ν−βρ cannot come from M∗(δ([ν−αρ, ναρ])) since
α < β. Suppose now that M∗(δ([ν−αρ, ναρ])) gives a non-trivial contribution to
the left-hand side of ⊗ of the term where δ([ν−βρ, νβρ])⊗ τ is a subquotient. Then
a short discussion gives δ([ν−βρ, νβ−kρ]) ⊗ τ ≤ µ∗(π) for some k ∈ N, k ≤ 2β.
This contradicts the square integrability of π. Thus, M∗(δ([ν−αρ, ναρ])) does not
give a non-trivial contribution to the left-hand side of ⊗. Now one can repeat the
argument from (i) without change, and get that we cannot get δ([ν−βρ, νβρ]) ⊗ τ
for a subquotient if i < j. This completes the proof.

The following lemma (which holds in a much bigger generality) points out a
well-known property of the Langlands classification. We state it in the setting in
which we shall use the property later.

4.4. Lemma. Suppose that τ is an irreducible tempered representation of Sq and
suppose that ρ is an irreducible cuspidal F ′/F -selfdual representation of a general
linear group GL(p). Let x, y ∈ R be such that y − x ∈ Z+ and x+ y > 0. Then the
representation

δ([νxρ, νyρ])o τ

has a unique irreducible quotient, which will be denoted by π. The multiplicity of
δ([ν−yρ, ν−xρ])⊗ τ in µ∗(δ([νxρ, νyρ])o τ) and µ∗(π) is one.

Proof. It is a well-known property of the Langlands classification that the mul-
tiplicity of δ([ν−yρ, ν−xρ]) ⊗ τ in µ∗(δ([νxρ, νyρ]) o τ) is one (this implies the
uniqueness of the irreducible quotient). One can also get this fact easily by using
formula (1-1) (and (1-3), where we allow a− in (1-3) also to be negative). Further,
π ↪→ δ([ν−yρ, ν−xρ])o τ (this follows from the fact that π is an image of the long
intertwining operator in the Langlands classification). Frobenius reciprocity now
implies that the multiplicity of δ([ν−yρ, ν−xρ])⊗ τ in µ∗(π) is one.

4.5. Lemma. Let π be an irreducible square integrable representation of Sq and let
ρ be an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Fix a ∈ Z+

and fix positive numbers α1, . . . , αk. Suppose
(i) αi > (a− 1)/2 for all i = 1, . . . , k, or αi < (a− 1)/2 for all i = 1, . . . , k;
(ii) αi 6= αj for i 6= j in {1, . . . , k};
(iii) (ρ, 2αi + 1) 6∈ Jord(π) for i = 1, . . . , k.

Let T be any irreducible subrepresentation of δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π (this is
a unitarizable representation). Then the multiplicity of

(⊗k
i=1 ν

αiρ
)
⊗ T in the

standard Jacquet modules of(
k∏
i=1

ναiρ

)
o T and

(
k∏
i=1

ναiρ

)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

is one. In particular,
(∏k

i=1 ν
αiρ
)
o T contains a unique irreducible subrepresen-

tation.
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Further, the multiplicity of
(⊗k

i=1 ν
αiρ
)
⊗δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])⊗π in a cor-

responding standard Jacquet module of
(∏k

i=1 ν
αiρ
)
×δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])oπ

is two, and the last representation has at most two irreducible subrepresentations.
If we have two irreducible subrepresentations, they are not isomorphic.

Proof. Frobenius reciprocity implies that the multiplicity of
(⊗k

i=1 ν
αiρ
)
⊗ T in a

corresponding Jacquet module of
(∏k

i=1 ν
αiρ
)
oT is at least one. Now using (1-1)

and (1-3) we obtain

µ∗

((
k∏
i=1

ναiρ

)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

)(4-9)

=
( k∏
i=1

(
1⊗ ναiρ+ ναiρ⊗ 1 + ν−αiρ⊗ 1

))
(4-10)

×
( (a−1)/2∑
i′=−(a−1)/2−1

(a−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−1)/2ρ])× δ([νj′+1ρ, ν(a−1)/2ρ])

(4-11)

⊗δ([νi
′+1ρ, νj

′
ρ])
)
o µ∗(π).

Denote Ψ =
(∏k

i=1 ν
αiρ
)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π.

Let τ be an irreducible representation of GL(kp, F ′) such that
⊗k

i=1 ν
αiρ is a

subquotient of a corresponding Jacquet module of τ . Then the cuspidal support of
τ is να1ρ, να2ρ, . . . , ναkρ. Let σ be an irreducible representation of Sq−kp. Each of

the representations
(⊗k

i=1 ν
αiρ
)
⊗T ,

(⊗k
i=1 ν

αiρ
)
⊗δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])⊗π,

which is a subquotient of a corresponding Jacquet module of Ψ, is a subquotient of
some Jacquet module of τ⊗σ as above (we use the transitivity of Jacquet modules).

First we shall analyze which terms in the above sum (4-10) – (4-11) can give
(after further multiplication) τ ⊗ σ as above, for a subquotient. We shall first
discuss how one can choose terms in the sum in (4-11). Suppose that for some
indexes i′, j′ we have −i′ ≤ (a − 1)/2 or j′ + 1 ≤ (a − 1)/2. Then we would have
ν(a−1)/2ρ in the cuspidal support of τ , which contradicts (i). Thus we always have
i′ = −(a− 1)/2− 1 and j′ = (a− 1)/2. Therefore, there is only one possibility for
the term in the sum in (4-11). This term is

1⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]).

Now we shall discuss how one can choose the terms in the product (4-10) . First
of all, since αi > 0 for all i, we must not take ν−αiρ⊗ 1, since ν−αiρ are not in the
cuspidal support of τ . Thus, we must take either 1⊗ ναiρ or ναiρ⊗ 1.

Suppose that for some index i, we have chosen 1⊗ ναiρ (which gives τ ⊗ σ for a
subquotient after further multiplication). Since ναiρ is in the cuspidal support of τ ,
and we have seen that in (4-11) we must take the term 1⊗δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]),
to be able to get τ⊗σ for a subquotient, we must have an irreducible representation
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τ ′ ⊗ σ′ such that

τ ′ ⊗ σ′ ≤ µ∗(π), Supp(τ ′) ⊆ {να1ρ, . . . , ναkρ} and ναiρ ∈ Supp(τ ′),

where here Supp is the cuspidal support of a representation of a general linear
group, viewed as an unordered collection of cuspidal representations. In fact, (ii)
implies that Supp(τ) and Supp(τ ′) are actually the sets. The above discussion and
Lemma 3.2 imply that ναjρ ⊗ σ′′ ≤ µ∗(π) for some ναjρ ∈ Supp(τ ′) and some
irreducible representation σ′′. Lemma 3.6 implies (ρ, 2αj + 1) ∈ Jord(π). This
contradicts (iii). Therefore, we must always take terms ναiρ⊗ 1 in the product.

Thus, τ ⊗σ must be a subquotient
(∏k

i=1 ν
αiρ
)
⊗ δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])oπ.

Note that
∏k
i=1 ν

αiρ is a regular representation of GL(kp, F ′). Since

δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

is a multiplicity one representation by (i) of Lemma 4.3 and Frobenius reciprocity,
the multiplicity one of

(⊗k
i=1 ν

αiρ
)
⊗ T claimed in the lemma directly follows.

Further, the claim of the lemma about multiplicity two of
(⊗k

i=1 ν
αiρ
)
⊗

δ([ν−(a−1)/2ρ, ν(a−1)/2ρ]) ⊗ π follows from (i) of Lemma 4.3. The claims about
the number of irreducible subrepresentations follow from Frobenius reciprocity and
the above multiplicities which we have calculated.

The previous part of the proof implies that if(
k∏
i=1

ναiρ

)
× δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

has two irreducible subrepresentations, say π1 and π−1, then

δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])o π

reduces to a sum of irreducible representations T1⊕T−1. Further, πi ↪→
(∏k

i=1 ν
αiρ
)

o Ti for i = ±1, or πi ↪→
(∏k

i=1 ν
αiρ
)
o T−i for i = ±1. This implies that(⊗k

i=1 ν
αiρ
)
⊗ Ti is a subquotient of a corresponding Jacquet module of πi for

i = ±1, or
(⊗k

i=1 ν
αiρ
)
⊗ T−i is a subquotient of a corresponding Jacquet module

of πi for i = ±1. Now the first part of the proof implies π1 6∼= π−1.

Note that for the proof of the above lemma we could suppose a weaker condition
instead of (i): (a − 1)/2 6∈ {a1, α2, . . . , αk}. Actually, the lemma holds in a much
bigger generality, but we prove a version which is adapted for our most frequent
applications.

4.6. Lemma. Let ρ be an irreducible cuspidal F ′/F -selfdual representation of
GL(p, F ′) and let π be an irreducible square integrable representation of Sq. Let
a−, a ∈ N, a− < a. Suppose that δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π reduces. Write

δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π = T1 ⊕ T−1,
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where Tη are irreducible and T1 6∼= T−1 (we can do this by (i) of Lemma 4.3).
Suppose that (ρ, b) 6∈ Jord(π) for a− ≤ b ≤ a. For η ∈ {±1} denote

ση =

(a−1)/2−((a−−1)/2+1)⊗
i=0

ν(a−1)/2−iρ

⊗ Tη,
π0 = δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π,

πη =

(a−1)/2−((a−−1)/2+1)∏
i=0

ν(a−1)/2−iρ

o Tη,
π′η = δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη.

Then:
(i) The multiplicity of ση in corresponding Jacquet modules of π0, πη and π′η is

one.
(ii) The multiplicity of ση in corresponding Jacquet modules of π−η and π′−η is

zero.

Proof. Let k ∈ Z+. For an irreducible representation γ of Sq and τ ⊗ σ of M(p′)
∼=

GL(p′, F ′)× Sq−p′ we shall write

Mult(τ ⊗ σ, µ∗(γ)) = k

if k(τ ⊗ σ) ≤ µ∗(γ) and (k + 1)(τ ⊗ σ) 6≤ µ∗(γ).
Denote

σ′η = δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])⊗ Tη.
Then the multiplicity of σ′η in corresponding Jacquet modules of π0, πη, π−η, π′η and
π′−η is equal to the multiplicity of ση in corresponding Jacquet modules of π0, πη,
π−η, π′η and π′−η, respectively (this follows from the well-known characterization of
δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ]) in terms of Jacquet modules).

Using (1-1) and (1-3) we get

(4-13) µ∗
(
δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

)
=
( (a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])

⊗ δ([νi+1ρ, νjρ])
)
o µ∗(π).

Note that

π′η ≤ πη.(4-14)

Since

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])⊗ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])

≤M∗(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]))

(take in (4-13) indexes i = −(a− − 1)/2− 1, j = (a− − 1)/2), we get

1 ≤Mult(σ′η : µ∗(π0)).(4-15)
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Frobenius reciprocity implies

1 ≤ Mult(σ′η : µ∗(π′η)).(4-16)

Now (4-14) implies

1 ≤ Mult(σ′η : µ∗(πη)).(4-17)

Note that

π0 ≤ π′1 + π′−1 ≤ π1 + π−1.(4-18)

Lemma 4.5 implies

Mult(ση, µ∗(π1 + π−1)) = Mult(ση, µ∗(πη)) = 1.(4-19)

Now from (4-14) – (4-19) we can conclude all the claims of the lemma.

The next corollary follows directly from the above lemma.

4.7. Corollary ([M2], Remark 5.1.1). Let the notation and the assumptions be the
same as in the above lemma. Then

(i) The representation π0 has exactly two irreducible subrepresentations. They
are not isomorphic.

(ii) The representation πη has a unique irreducible subrepresentation. This sub-
representation is a unique irreducible subrepresentation of π′η. The corresponding
two irreducible subrepresentations, for η = ±1, are irreducible subrepresentations
of π0.

(iii) The representations π′η are reducible.

Proof. We get (i) and (ii) directly from π0 ↪→ π1 ⊕ π−1 and the multiplicities in
the above lemma. Namely, π1 and π−1 have unique irreducible subrepresentations
and they are not isomorphic (this follows from the above lemma). Further, these
irreducible subrepresentations must show up in π0 because of the multiplicities
calculated in the above lemma. It remains to prove (iii).

Suppose π′η is irreducible. Then π′η ≤ π0 by (ii). This implies µ∗(π′η)≤ µ∗(π0).
Therefore, δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ])⊗Tη is a subquotient of (4-13) (see Lemma
4.4). Since a, a− > 0, to be able to get δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ]) ⊗ Tη for a
subquotient of a term in the sum (4-13) we need to have −i > (a− − 1)/2 and
j + 1 > (a − 1)/2. This implies i = −(a− − 1)/2 − 1 and j = (a − 1)/2. Thus,
δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ])⊗ Tη must be a subquotient of

1⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o µ∗(π).

Therefore, we must have δ([ν−(a−1)/2ρ, ν−(a−−1)/2−1ρ]) ⊗ τ ≤ µ∗(π) for some ir-
reducible τ . This contradicts the square integrability of π. The proof is now
complete.

5. Factors of square integrable representations and Jord

We shall very often use the following lemma, which is already in 5.1 of [M2].

5.1. Lemma. Let π be an irreducible square integrable representation of Sq and
let ρ be an irreducible F ′/F -selfdual cuspidal representation of GL(p, F ′). Suppose
that we have a ∈ Jordρ(π) such that a− is defined and that the following holds:

επ(ρ, a) = επ(ρ, a−).
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Denote Jord′ = Jord(π) \ {(ρ, a), (ρ, a−)}. Let Jord′, πcusp, ε′ be the subordinated
triple to Jord(π), πcusp, επ. Then there exists an irreducible square integrable rep-
resentation π′ of Sq−p(a+a−)/2 such that Jord(π′) = Jord′, π′cusp = πcusp and
επ′ = ε′. Further

π ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.(5-1)

Proof. Since επ(ρ, a) = επ(ρ, a−), we have π ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o τ for
some irreducible τ . The first lemma in the fifth section of [M2] implies

τ ↪→ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

for the irreducible square integrable representation π′ satisfying

(Jord(π′), (π′)cusp, επ′) = (Jord′, πcusp, ε′).

Thus

π ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.(5-2)

Note that

(5-3) δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′

↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.

By Lemma 4.5 (and Remark 4.2), the representation

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

has exactly two irreducible subrepresentations. Since Corollary 4.7 implies that
the representation δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′ also has exactly two irreducible
subrepresentations, (5-2) and (5-3) imply (5-1).

Let π be an irreducible square integrable representation of Sq. If π is strongly
positive, then by definition

e(τ) > 0

for each factor τ of π. Further, the admissible triple Jord(π), πcusp, επ is of alter-
nated type ([M2], 5.3). Suppose that π is not strongly positive. Then Jord(π), πcusp,
επ is of mixed type. The following lemma gives us general information about factors
of square integrable representations which are not strongly positive.

To simplify discussion in some cases, we shall often in the sequel restrict to the
case where the admissible triple Jord, πcusp, ε satisfies the following condition: there
exists an irreducible cuspidal F ′/F -selfdual representation ρ of GL(p, F ′) such that

Jord \ {(ρ, a); a ∈ Jordρ} ⊆ Jord(πcusp).(L)

This means that we are looking only at the irreducible square integrable represen-
tations which are subquotients of the parabolically induced representations of the
following type: (∏̀

i=1

νxiρ

)
o πcusp,

where ` is a non-negative integer and xi ∈ R, i = 1, . . . , `.
We shall say that an irreducible square integrable representation π of Sq satisfies

(L) if Jord(π), πcusp, επ satisfies (L). The representation ρ in condition (L) will
always be fixed in such a way that it is clear which ρ is being considered.
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5.2. Lemma. Suppose that π is an irreducible square integrable representation
of Sq which is not strongly positive. Take any (ρ, a) ∈ Jord(π) such that a− ∈
Jordρ(π) is defined, and that επ(ρ, a) = επ(ρ, a−). Suppose that (L) holds. Define
aρ(π) ∈ Jordρ(π) to be maximal with these properties (then aρ(π)− ∈ Jordρ(π) is
defined and επ(ρ, aρ(π)) = επ(ρ, aρ(π)−)). Now if τ = νkρ, k ∈ R, is a factor of π,
then

k = e(τ) ≥ −(aρ(π)− − 1)/2.(5-4)

Proof. The proof proceeds by induction with respect to q. Denote

a = aρ(π).

By the above lemma, there exists an irreducible square integrable representation π′

such that

π ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′,(5-5)

where

Jordρ(π′) = Jordρ(π) \ {a, a−}(5-6)

and Jord(π′), π′cusp, επ′ is subordinated to Jord(π), πcusp, επ. Note that (5-6) and
the inductive assumption imply

either π′ is strongly positive, or aρ(π′) is defined and aρ(π′)− < a− = aρ(π)−.
(5-7)

Thus, the inductive assumption or the fact that π′ is strongly positive if π′ is
actually strongly positive implies that ναρ is not a factor of π′ if α ≤ −(a−− 1)/2.

Suppose that (5-4) does not hold. Let τ = νkρ be a factor for which (5-4) does
not hold. Fix such a factor τ = νkρ with minimal possible k. Note that (5-5), the
fact that ναρ is not a factor of π′ if α ≤ −(a− − 1)/2, (1-2) and (1-4) imply that

k ∈ [−(a− 1)/2,−(a− − 1)/2− 1](5-8)

(and k + (a− 1)/2 ∈ Z). Clearly k ≤ −1. By the choice of k, τ = νkρ satisfies the
assumption of Lemma 3.4 (and also (5-8)). Let c = −2k + 1 (then k = −(c− 1)/2
and c ≥ 3). Now (5-8) implies −(a− 1)/2 ≤ −(c− 1)/2 < −(a− − 1)/2. Thus

a− < c ≤ a.(5-9)

Lemma 3.4 implies

π ↪→ δ([ν−(c−1)/2ρ, ν(b−1)/2ρ])o π′′(5-10)

for some b ∈ c+ 2Z which satisfies −(c− 1)/2 ≤ (b− 1)/2 (i.e. b+ c− 2 ≥ 0). The
square integrability of π and (5-10) (and Frobenius reciprocity) imply

c < b.(5-11)

Since (by our choice) k is minimal such that νkρ is a factor of π, there is no
embedding π ↪→ δ([ν−(c′−1)/2ρ, ν(b−1)/2ρ]) o π′′′, for some irreducible π′′′ with
−(c′ − 1)/2 < (c − 1)/2. Therefore, Remark 3.2 of [M2] implies that π′′ is square
integrable. Proposition 2.1 now implies

b, c ∈ Jordρ(π).(5-12)

From (5-9), (5-11) and (5-12) we get

a ≤ c < b.(5-13)
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This implies that b− ∈ Jordρ(π) is defined and (5-13) implies b− ≥ c. Now (5-10),
Lemma 3.2 and the definition of επ imply

επ(ρ, b) = επ(ρ, b−)(5-14)

(see also Lemma 5.2 in [M2]).
Note that (5-14) implies b ≤ a = aρ(π). This contradicts (5-13). This contradic-

tion completes the proof.

We shall include here the following lemma, although we shall not use it in this
paper. This lemma complements Lemma 5.4.1 of [M2].

5.3. Lemma. Let π be an irreducible square integrable representation. Suppose
a ∈ Jordρ(π) and a+ 2 6∈ Jordρ(π). Then

ν(a+1)/2ρo π

reduces. Further, it contains a unique irreducible subrepresentation.

Proof. Suppose that ν(a+1)/2ρo π is irreducible. Let τ be an irreducible subrepre-
sentation of δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])o π. Then

τ ↪→ δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])o π

↪→ δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])× ν−(a+1)/2ρo π
∼= δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])× ν(a+1)/2ρo π
∼= ν(a+1)/2ρ× δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2ρ])o π

↪→ ν(a+1)/2ρ× ν(a+1)/2ρ× δ([ν−(a+1)/2+1ρ+ 1, ν(a+1)/2−1ρ])o π.

Now Frobenius reciprocity implies that

τ ′ = ν(a+1)/2ρ× ν(a+1)/2ρ⊗ δ([ν−(a−1)/2ρ+ 1, ν(a−1)/2ρ])o π

is a subquotient of a corresponding Jacquet module of π (note that τ ′ is irreducible).
Now we get directly that the multiplicity of τ ′ in µ∗(δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])oπ)

is one (use a+2 6∈Jordρ(π)). This proves irreducibility of δ([ν−(a+1)/2ρ, ν(a+1)/2ρ])
o π, which contradicts our assumption a + 2 6∈ Jordρ(π) (note that a ∈ Jordρ(π)
and therefore a and also a + 2 satisfy (J-1)). Thus, we have proved reducibility.
The uniqueness of the irreducible subrepresentation follows from Lemma 4.5.

Having in mind Lemma 5.4.1 of [M2] and the above (simple) lemma, it remains
to describe a criterion for reducibility of ν(a+1)/2ρ o π when a ∈ Jordρ(π) and
a+ 2 ∈ Jordρ(π). The criterion is the following: we have irreducibility if and only
if

επ(ρ, a+ 2) 6= επ(ρ, a).

This is proved using intertwining operators. The composition of the two standard
intertwining operators

ν(a+1)/2+sρo π → ν−(a+1)/2−sρo π → ν(a+1)/2+sρo π

is holomorphic and non-zero at s = 0 under the hypothesis that (ρ, a) and (ρ, a+2)
are in Jord(π). Moreover the first one is holomorphic at s = 0 by a general
result of Harish-Chandra. Therefore, we need to prove that the second one is also
holomorphic. This can be done by an inductive argument with respect to π (since
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the argument is long, and we shall not use this result in this paper, we shall not
write it down here).

6. Theorem

If we consider the series of odd-orthogonal (resp. symplectic) groups, then
the degree deg(Jord) of an admissible triple Jord, πcusp, ε is defined to be n if∑

(ρ,a)∈Jord adρ = 2n (resp.
∑

(ρ,a)∈Jord adρ = 2n + 1). In [M2], it is proved that
the mapping

π → (Jord(π), πcusp, επ)

is an injective mapping from the set of all equivalence classes of irreducible square
integrable representations of Sn into the set of all admissible triples of degree n.
In this paper we shall prove that this mapping is surjective. In this way we shall
prove the following

6.1. Theorem. Assume that (BA) holds. Then the map

π → (Jord(π), πcusp, επ)

defines a bijection from the set of all equivalence classes of irreducible square inte-
grable representations of groups Sn onto the set of all admissible triples.

Suppose further that besides (BA), the equality in (A) also holds. Under these
assumptions, the map π → (Jord(π), πcusp, επ) is a bijection from the set of all
equivalence classes of irreducible square integrable representations of the group Sn
onto the set of all admissible triples of degree n.

In the next five sections we shall prove this theorem.

7. Strongly positive irreducible representations

Let Jord, πcusp, ε be an admissible triple of alternated type. In the first part
of this section we shall assume that (L) holds for this triple. When we work with
Jord which satisfies (L), then for a ∈ Jordρ we will usually denote ε(ρ, a) simply
by ε(a). Also the function φρ will be denoted simply by φ. Note that if ρ′ 6∼= ρ,
then φρ′(b) = b for b ∈ Jordρ′ = Jordρ′ (πcusp).

Write the elements of Jordρ as

a1 < a2 < · · · < ak(7-1)

(the possibility k = 0 is not excluded). Recall that Jordρ ⊆ 2N or 1 + 2Z+.
We shall say that we are in the even case if Jordρ ⊆ 2N, and in the odd case if
Jordρ ⊆ 1 + 2Z+.

If we are in the odd case, then from (2-3) and (2-6) we get

Jord′ρ(πcusp) = {1, 3, . . . , 2k − 1},(7-2)

φ : {a1, a2, . . . , ak} → {1, 3, . . . , 2k − 1}, ai 7→ 2i− 1.(7-3)

In the even case we have two possibilities.
Suppose ε(a1) = −1. Then

Jord′ρ(πcusp) = {2, 4, . . . , 2k},(7-4)

φ : {a1, a2, . . . , ak} → {2, 4, . . . , 2k}, ai 7→ 2i.(7-5)
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If ε(a1) = 1, then

Jord′ρ(πcusp) = {0, 2, 4, . . . , 2(k − 1)},(7-6)

φ : {a1, a2, . . . , ak} → {0, 2, 4, . . . , 2(k − 1)}, ai 7→ 2(i− 1).(7-7)

Suppose that we have some Jord and πcusp (we do not assume that they form
an admissible triple for the moment). Assume that they satisfy (L). Write Jordρ
as in (7-1).

Let Jordρ ⊆ 1+2Z. Suppose we have a function φ as in (7-3). Then it is easy to
see that there is a unique partially defined function ε such that Jord, πcusp, ε form
an admissible triple of alternated type, and that the corresponding function φρ is
φ.

Suppose Jordρ ⊆ 2Z and suppose that a function φ as in (7-5) (resp. (7-7))
is given. Then again there exists a unique partially defined function ε such that
Jord, πcusp, ε form an admissible triple of alternated type such that the correspond-
ing function φρ is φ. One needs to take ε(a1) = −1 (resp. ε(a1) = 1).

Therefore, we do not need to work with ε’s. Instead we can work directly with
functions φ.

Note that (7-1) – (7-7) imply

ai ≥ φ(ai),(7-8)

ai′ > φ(ai′) ⇒ ai ≥ φ(ai) + 2 for all i ≥ i′.(7-9)

Lemma 4.1 implies that the representation

σ0 =

(
k∏
i=1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

)
o πcusp(7-10)

has a unique irreducible subrepresentation. We shall denote this subrepresentation
by

π = π(Jord,πcusp,ε) = π(Jord,πcusp,φ).(7-11)

In this section we shall prove

7.1. Proposition. The representation π is strongly positive (square integrable rep-
resentation).

If φ(ai) = ai for all i, then π = πcusp and the proposition holds. If this is not
the case, then ak ≥ φ(ak) + 2. Therefore, we shall assume

ak ≥ φ(ak) + 2.

We shall prove the proposition by induction with respect to the degree of Jord.
Let

j = min{i ; 1 ≤ i ≤ k and ai > φ(ai)}.
In the proof of the proposition we shall need the following

7.2. Lemma. (i) The multiplicity of

ν(aj−1)/2ρ⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])

⊗

 k⊗
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

⊗ πcusp



DISCRETE SERIES 749

in the standard Jacquet module of

(7-12) σ1 = ν(aj−1)/2ρ× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
is one.

(ii) Suppose aj ≥ φ(aj) + 4. Then the multiplicity of

δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−2ρ])

⊗

 k⊗
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

⊗ πcusp
in the standard Jacquet module of

(7-13) σ2 = δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
is one.

(iii) Suppose aj = φ(aj) + 2 and j < n. Then the multiplicity of

ν(aj−1)/2ρ⊗ ν(aj+1−1)/2ρ⊗ δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

⊗

 k⊗
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

⊗ πcusp
in the standard Jacquet module of

(7-14) σ3 = ν(aj−1)/2ρ× ν(aj+1−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
is one.

Proof. (i) In the same way as in Lemma 4.1, the proof of (i) reduces to the fact that
the multiplicity of ν(aj−1)/2ρ ⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−1ρ]) in a corresponding
Jacquet module of ν(aj−1)/2ρ× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ]) is one. This is true,
since we are in the regular situation.

(ii) Again, as in the proof of Lemma 4.1, the proof of (ii) reduces to the fact that
the multiplicity of δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) ⊗ δ([ν(φ(aj)+1)/2ρ, ν(aj−2)/2−2ρ]) in
a corresponding Jacquet module of

δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])× δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ])

is one. This again follows from the regularity.
(iii) The proof of (iii) proceeds in a similar way. The proof reduces to the fact that

the multiplicity of ν(aj−1)/2ρ⊗ ν(aj+1−1)/2ρ⊗ δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ]) in
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a corresponding Jacquet module of

ν(aj−1)/2ρ× ν(aj+1−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

is one.
Note that aj = φ(aj)+2 < φ(aj+1)+2. This implies (aj−1)/2 < (φ(aj+1)+1)/2.

Thus, we are again in the regular situation. Therefore, the above multiplicity one
holds and further, the multiplicity one claimed in (iii) holds.

Proof of Proposition 7.1. We use the notation from the beginning of this section
and after Proposition 7.1. Recall that σ0 is defined in (7-10).

First we shall define a new triple with the same πcusp.
Denote Jord′ = (Jord \ {(ρ, aj)})∪{(ρ, aj−2)} if aj 6= 2. Let φ′ be the function

on Jord′ρ defined by φ′(aj − 2) = φ(aj) and φ′(ai) = φ(ai) otherwise.
Suppose aj = 2 (then j = 1 and we are in the setting of (7-6) and (7-7)). Denote

Jord′ = Jord \ {(ρ, 2)}. In this case take φ′ to be the restriction of φ.
Now the representation

σ′1 = δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−1ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
contains by Lemma 4.1 a unique irreducible subrepresentation π′ = π(Jord′,πcusp,φ′).
By the inductive assumption, π′ is strongly positive (square integrable representa-
tion).

Note that σ1 = ν(aj−1)/2ρ o σ′1, and that this representation by (i) of Lemma
7.2 contains a unique irreducible subrepresentation. Clearly ν(aj−1)/2ρ o π′ ↪→
ν(aj−1)/2ρo σ′1. Since σ0 ↪→ ν(aj−1)/2ρo σ′1 and π ↪→ σ0, we get

π ↪→ ν(aj−1)/2ρo π′.(7-15)

This implies

sGL(π) ≤ (ν(aj−1)/2ρ+ ν−(aj−1)/2ρ)× sGL(π′).(7-16)

Suppose that π′ is cuspidal. Then

φ(aj) = aj − 2 and j = k.(7-17)

Thus, π ↪→ ν(ak−1)/2ρo πcusp. Suppose that we are in the even case. If ε(a1) = 1,
then k must be 1, and then a1 = 2. The reducibility is at 1/2 by (BA). This
implies that the irreducible subrepresentation of ν1/2ρo πcusp is square integrable
and strongly positive. Suppose ε(a1) = −1. Then ak = 2k + 2. Now we have
reducibility at (2k + 1)/2 = (ak − 1)/2. Therefore, we again get that π is strongly
positive. Suppose that we are in the odd case. Now (7-16) and the definition of j
imply that we have reducibility at ((2k − 1) + 1)/2 = k = (ak − 1)/2. Thus, π is
again strongly positive.

It remains to consider the case of non-cuspidal π′. There are two possibilities.
Assume aj > φ(j) + 2. Thus aj ≥ φ(j) + 4 (note that aj−1 = φ(aj−1) if

j > 1). If aj > 4, define Jord′′ = (Jord \ {(ρ, aj)}) ∪ {(ρ, aj − 4)}, and define
φ′′ by φ′′(aj − 4) = φ(aj) and φ′′(ai) = φ(ai) otherwise. If aj = φ(j) + 4, define
Jord′′ = Jord \ {(ρ, aj)} and take φ′′ to be the restriction of φ.
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Now the representation

σ′2 = δ([ν(φ(aj)+1)/2ρ, ν(aj−1)/2−2ρ])

×

 k∏
i=j+1

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
contains a unique irreducible subrepresentation π′′ = π(Jord′′,πcusp,φ′′). By the in-
ductive assumption, π′′ is strongly positive. Since σ0 ↪→δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])
oσ′2, δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])oπ′′ ↪→ δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])oσ′2, π ↪→ σ0

and σ2 = δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])o σ′2 contains a unique irreducible subrepre-
sentation, we get

π ↪→ δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ])o π′′.(7-18)

This implies

(7-19) sGL(π) ≤ (δ([ν(aj−1)/2−1ρ, ν(aj−1)/2ρ]) + ν−(aj−1)/2−1ρ× ν(aj−1)/2ρ

+ δ([ν−(aj−1)/2ρ, ν−(aj−1)/2+1ρ]))× sGL(π′′).

Since π′ and π′′ are strongly positive, (7-19) applied to (7-16) gives

sGL(π) ≤ ν(aj−1)/2ρ× sGL(π′).(7-20)

Since π′ is strongly positive, (7-20) implies that π is strongly positive.
It remains to consider the case aj = φ(aj) + 2. Since π′ is not cuspidal, we have

j < k.
Suppose aj+1 = φ(aj+1) + 2. Note that aj+1 = φ(aj+1) + 2 = φ(aj) + 4 =

aj + 2. Then in the same way as we defined the strongly positive representation
π′ from π, we can repeat that construction and get that there exists an irreducible
subrepresentation π′′′ of

σ′3 =

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp,
which is strongly positive by the inductive assumption, and that

π′ ↪→ ν(aj+1)/2ρo π′′′,(7-21)

which implies

(7-22) π ↪→ ν(aj−1)/2ρo π′ ↪→ ν(aj−1)/2ρ× ν(aj+1)/2ρo π′′′

↪→ ν(aj−1)/2ρ× ν(aj+1)/2ρo σ′3.

Since

s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ])o π′′′ ↪→ ν(aj−1)/2ρ× ν(aj−1)/2+1ρo σ′3

(s is defined in section 1 and is the Speh module) and σ3 = ν(aj−1)/2ρ×ν(aj+1)/2ρo
σ′3 has a unique irreducible subrepresentation by (iii) of Lemma 7.2, we get

π ↪→ s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ])o π′′′.
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This implies

sGL(π) ≤
(

s([ν(aj−1)/2ρ, ν(aj−1)/2+1ρ]) + ν−(aj−1)/2−1ρ× ν(aj−1)/2ρ

+ s([ν−(aj−1)/2−1ρ, ν−(aj−1)/2ρ])
)
o sGL(π′′′).

From this and (7-16) we again get (7-20) (using that π′′′ is strongly positive). Thus,
π is strongly positive.

It remains to consider the case of aj+1 > φ(aj+1) + 2 = φ(aj) + 4 = aj + 2. Note
that π embeds into σ3, which is isomorphic to

(7-23) ν(aj+1−1)/2ρ× ν(aj−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
(since aj+1 > aj + 2). Recall that σ3 (and also the above representation) has a
unique irreducible subrepresentation by (iii) of Lemma 7.2. Consider Jord′′′′ =
(Jord \ {(ρ, aj+1)}) ∪ {(ρ, aj+1 − 2)} and φ′′′′ defined by φ′′′′(aj+1 − 2) = φ(aj+1)
and φ′′′′(ai) = φ(ai) otherwise. By Lemma 4.1 we know that the representation

σ′′3 = ν(aj−1)/2ρ× δ([ν(φ(aj+1)+1)/2ρ, ν(aj+1−1)/2−1ρ])

×

 k∏
i=j+2

δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ])

o πcusp
has a unique irreducible subrepresentation, which we denote by π′′′′. Further,
the inductive assumption implies that π′′′′ is strongly positive. Since ν(aj−1)/2ρ o
π′′′′ ↪→ ν(aj−1)/2ρ o σ′′3

∼= σ3, π ↪→ σ0 ↪→ σ3 and σ3 has a unique irreducible
subrepresentation, we get

π ↪→ ν(aj+1−1)/2ρo π′′′′.
This implies

sGL(π) ≤ (ν(aj+1−1)/2ρ+ ν−(aj+1−1)/2ρ)× sGL(π′′′′).

Since (aj+1−1)/2 6= (aj−1)/2, the above inequality and (7-16) imply (7-20) (using
that π′′′′ is strongly positive). Thus, π is strongly positive. Now the proof of the
square integrability claimed in the proposition is complete.

We no longer assume that condition (L) from the fifth section holds for our
admissible triple. Denote

σ =

∏
ρ

 ∏
a∈Jordρ

δ([ν(φρ(a)+1)/2ρ, ν(a−1)/2ρ])

o πcusp,
where the first product runs over all ρ for which (ρ, a) ∈ Jord for some a ∈ N,
and the second product is taken in an order which follows the ordering of Jordρ.
Then in a similar way as in Lemma 4.1, it follows that σ has a unique irreducible
subrepresentation. Denote it by π = π(Jord,πcusp,ε). Now Proposition 7.1 implies
that π is square integrable. There are several arguments for that. Maybe the most
elementary is the simple elementary Lemma 4.7 of [T4].
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7.3. Lemma. Let Jord, πcusp, ε be an admissible triple of alternated type. We have
(π(Jord,πcusp,ε))cusp = πcusp. Denote π = π(Jord,πcusp,ε). Then

(Jord(π), πcusp, επ) = (Jord, πcusp, ε).

Proof. It is easy to see from the proof that the partial cuspidal support of π is
πcusp. The fact that Jord(π) coincides with Jord is proved using 2.1 (i). Now the
representation π coincides with the strongly positive representation in 4.1 of [M2].
The strongly positive property is equivalent (see 5.3 of [M2]) to the fact that επ
is alternated. One easily sees that the alternated partially defined function ε on
Jord, such that (Jord, πcusp, ε) is admissible if it exists, is unique. This implies
επ = ε.

This ends the proof that each admissible triple of alternated type comes from
a (strongly positive) square integrable representation. Therefore, for a proof of
Theorem 6.1 we need to settle the case of admissible triples of mixed type. Before we
proceed to the proof in this case, we shall prove a useful (essentially combinatorial)
result in the following section.

The simplest examples of the strongly positive irreducible square integrable rep-
resentations are Steinberg representations. Further simple examples of such rep-
resentations can be found in [T1]. Let π be a strongly positive irreducible square
integrable representation. Then it is easy to show that sGL(π) is irreducible (one
can also write directly the Langlands parameters of these Jacquet modules). Other
Jacquet modules do not need to always be irreducible (for the difference of the case
of Steinberg representations). A very interesting representation from the point of
view of the unitary duals of general linear groups can be tensor factors in sGL(π).

8. Tempered and square integrable representations

with the same infinitesimal character

Let Jord, πcusp, ε be an admissible triple of alternated type and let π be the
strongly positive representations with these invariants. Suppose

π ≤ τ1 × · · · × τn o πcusp,(8-1)

where τi are irreducible cuspidal representations. Then by induction with respect
to the number of elements in Jord \ Jord(πcusp) we get

Supp(Jord) = Supp(Jord(π)) = Supp(Jord(πcusp)) +
n∑
i=1

{τi, τ̌i}.(8-2)

Suppose now that the triple Jord, πcusp, ε is of mixed type. Then there exists
a sequence of triples Jordi, πcusp, εi, 1 ≤ i ≤ k, such that: (Jord, πcusp, ε) =
(Jord1, πcusp, ε1), Jordi+1, πcusp, εi+1 is subordinated to Jordi, πcusp, εi for 1 ≤ i ≤
k − 1, and Jordk, πcusp, εk is admissible of alternated type. Therefore, there exists
a(i), a(i)− ∈ (Jordi)ρi , i = 1, . . . , k − 1, such that

Jordi+1 = Jordi \ {(ρi, a(i)), (ρi, a(i)−)}, i = 1, . . . , k − 1.(8-3)
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Denote by π+ the strongly positive representation determined by Jordk, πcusp, εk.
Now

Supp(Jord)

= Supp(π+) +
k−1∑
i=1

(
δ([ν−(a(i)−1)/2ρ, ν(a(i)−1)/2ρ])

+ δ([ν−(a(i)−−1)/2ρ, ν(a(i)−−1)/2ρ])
)

= Supp(π+) +
k−1∑
i=1

(
δ([ν−(a(i)−−1)/2ρ, ν(a(i)−1)/2ρ])

+ δ([ν−(a(i)−1)/2ρ, ν(a(i)−−1)/2ρ])
)
.(8-4)

Suppose that π+ ≤ τ1 × · · · × τn o πcusp, where τi are irreducible cuspidal
representations. Consider the following element of the Grothendieck group:

Π =

k−1∏
i=1

 (a(i)−1)/2∏
ji=−(a(i)−−1)/2

νjiρi

× τ1 × · · · × τn o πcusp.(8-5)

Write

Π = σ1 × · · · × σm o πcusp,(8-6)

where σi are irreducible cuspidal representations (this is just another way of writing
(8-5)). Then (8-2) and (8-4) imply

Supp(Jord) = Supp(Jord(πcusp)) +
m∑
i=1

{σi, σ̌i}.(8-7)

One reconstructs Jord from Supp(Jord) in the following simple way. One can
write Supp(Jord) =

∑l
i=1 ∆i as a sum of segments in such a way that among

segments ∆i there is no linking (∆i are sets, so one can consider them as multisets).
First,

∆i 6= ∆j for i 6= j.(8-8)

Write ∆i = [ν−(bi−1)/2γi, ν
(bi−1)/2γi]. Then

Jord = {(γ1, b1), . . . , (γl, bl)}.(8-9)

The following essentially combinatorial lemma will be very useful to us.

8.1. Lemma. Let the notation be as above. Then if π is an irreducible tempered
representation and π ≤ Π, then π is square integrable.

Proof. Suppose that π is not square integrable. Then there exist irreducible unita-
rizable square integrable representations δ(∆i) of GL(ni, F ′) for i = 1, . . . , s, where
s ≥ 1 and all ni ≥ 1, and an irreducible unitarizable square integrable representa-
tion π′ of Sq′ such that

π ≤ δ(D1)× · · · × δ(Ds)o π′.
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Since π ≤ Π, we get that ∆̌i = ∆i for i = 1, . . . , s. From formula (8-7) we get

Supp(Jord) = Supp(Jord(π′)) +
s∑
i=1

(
∆i + ∆̌i

)
= Supp(Jord(π′)) + 2

s∑
i=1

∆i.

(8-10)

Since π′ is square integrable, from [M2] it follows that Jord(π′), πcusp, επ′ form
an admissible triple. Thus for Jord(π′), the properties which we described above
for Jord hold. Now (8-10) implies that (8-8) does not hold. This contradiction
completes the proof.

We shall not use the following direct consequence of the above lemma, but it is
interesting to note.

8.2. Corollary. Let τ1 and τ2 be irreducible tempered representations of Sq with
the same infinitesimal character. Then τ1 is square integrable if and only if τ2 is
square integrable.

9. Square integrability I

In this and the following two sections, π will denote an irreducible square inte-
grable representation of Sq, ρ will be an irreducible cuspidal F ′/F -selfdual repre-
sentation of GL(p, F ′), and a, a− ∈ N will be such that a − a− ∈ 2N. We shall
assume that (ρ, a) satisfies (J-1) and that

[a−, a] ∩ Jordρ(π) = ∅.(9-1)

Then by Corollary 4.7, the representation

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π(9-2)

has exactly two irreducible subrepresentations. They are not equivalent. Write

δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π = T1 ⊕ T−1(9-3)

as a sum of two irreducible (tempered) representations (T1 and T−1 are not equiv-
alent). Then

δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη

contains a unique irreducible subrepresentation, which we denote by πη. Further,
π1 6∼= π−1, and these representations are the irreducible subrepresentations of (9-2).
Note that

(9-4) πη ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])o Tη
↪→ ν(a−1)/2ρ× ν(a−1)/2−1ρ× · · · × ν(a−−1)/2+1ρo Tη.

Denote

Πη = ν(a−1)/2ρ× ν(a−1)/2−1ρ× · · · × ν(a−−1)/2+1ρo Tη.(9-5)

Then Πη also has a unique irreducible subrepresentation by Lemma 4.5 (use (9-1)).
The aim of this and the following two sections is to prove the following

9.1. Proposition. Representations πη are square integrable.
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The importance of the above proposition follows from the following

9.2. Lemma. (i) Suppose that the claim of the above proposition holds for all
π, ρ, a and a− as above, which satisfy

deg(Jord(π)) + p(a+ a−)/2 ≤ n.
Then for each admissible triple Jord, πcusp, ε of degree ≤ n, there exist a positive
integer ` and an irreducible square integrable representation of S` with these invari-
ants.

(ii) Assume that the equality in (A) holds (besides (BA)) and suppose that the
claim of the above proposition holds for all π, ρ, a and a− as above, which satisfy

q + p(a+ a−)/2 ≤ n.
Then for each admissible triple Jord, πcusp, ε of degree ≤ n, there exist a positive
integer ` ≤ n and an irreducible square integrable representation of S` with these
invariants.

It is very easy to see that the above lemma implies that Theorem 6.1 follows
from Proposition 9.1.

Proof. We shall prove the lemma by induction with respect to n. The proof of
(i) and (ii) goes similarly, except that for (ii) one additionally uses, besides the
inductive assumption, (2-1) (and the equality in (A)). The basis of induction is
provided by Proposition 7.1. Let Jord, πcusp, ε be an admissible triple of degree
≤ n. If it is of alternated type, then Proposition 7.1 implies the existence of an
irreducible square integrable representation with these invariants.

Suppose now that Jord, πcusp, ε is of mixed type. Then we can choose a, a− ∈
Jordρ for some ρ, such that ε(ρ, a)=ε(ρ, a−). Denote Jord′=Jord\{(ρ, a), (ρ, a−)}.
Let ε′ be the restriction of ε to Jord′ (ε′ is partially defined). Then the degree of
Jord′ is strictly lower than the degree of Jord, which is ≤ n. Since Jord′, πcusp, ε′

is an admissible triple, the inductive assumption implies that there exists an ir-
reducible square integrable representation π′ with these invariants. Now, the as-
sumption of the lemma implies that π1 and π−1 are square integrable. Clearly,
(πη)cusp = πcusp for η = ±1. Further, Lemma 5.2 of [M2] implies Jord(πη) = Jord
for i = ±1. Therefore, the first two invariants of π1 and π−1 are the same. Since
π1 6∼= π−1, we have επ1 6= επ−1 (this implies the main result of [M2], the injectiv-
ity of (2-2)). Further, by (9-1) we can apply Lemma 5.4, Lemma 5.5 and (ii) of
Proposition 6.1 (all) from [M2]. They give that the restriction of επη , η = ±1, to
Jord(π′) = Jord′ is επ′ = ε′.

It is easy to see that ε′ can be extended to a partially defined function on Jord,
to make an admissible triple with Jord and πcusp, exactly in two ways. Denote
these extensions by ε1 and ε−1. The above discussion implies επη = εη for η = ±1
or επη = ε−η for η = ±1. Since ε ∈ {ε±1}, we get that there exists η ∈ {±1} such
that επη = ε. This completes the proof.

Now we shall start the proof of Proposition 9.1.
To prove the proposition, it is enough to prove it for π which satisfy (L). There

are several ways to see this. Technically, the simplest way seems to be to apply an
elementary Lemma 4.7 of [T4].

Note that the proof of the proposition that we shall present actually does not
require (L), but, assuming (L), the proof (which is relatively complicated) will
become a little bit shorter and will use simpler notation.
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Therefore, we shall assume that π satisfies (L) (this assumption is not important
for this section, since it is automatically satisfied here).

First we shall prove the proposition for cuspidal π.

9.3. Lemma. If π is cuspidal, then πη are square integrable.

Proof. We shall prove the lemma by induction with respect to a− a−.
Suppose that σ is an irreducible subquotient of (9-2). From (9-2) it follows that

sGL(σ) ≤

 (a−1)/2+1∑
i=−(a−−1)/2

δ([νiρ, ν(a−1)/2ρ])× δ([ν−i+1ρ, ν(a−−1)/2ρ])

⊗ πcusp.
(9-6)

This implies that the factors of σ are contained in

{ν−(a−1)/2ρ, ν−(a−1)/2+1ρ, . . . , ν(a−1)/2ρ}.

Suppose that ν−(a−1)/2ρ is a factor of σ. Then we see from (9-6) that the only
possibility of getting ν−(a−1)/2ρ as a factor is to take the index i = (a − 1)/2.
This implies that δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ]) ⊗ πcusp ≤ sGL(σ). Now Lemma 4.4
implies that σ is an irreducible (Langlands) quotient of (9-2). Since (9-2) reduces,
we obtain that σ 6∼= πη for η = ±1.

Fix η ∈ {±1}. We have just shown that

the factors of πη are contained in {ν−(a−1)/2+1ρ, ν−(a−1)/2+2ρ, . . . , ν(a−1)/2ρ}.
(9-7)

Suppose a = a− + 2. Then πη ↪→ ν(a−1)/2ρo Tη. Now (1-2) implies

sGL(πη) ≤ sGL(ν(a−1)/2ρo Tη) = (ν(a−1)/2ρ+ ν−(a−1)/2ρ)× sGL(Tη).

Further, the above inequality and (9-7) imply

sGL(πη) ≤ ν(a−1)/2ρ× sGL(Tη).

From this and Lemma 3.5, we get that πη is tempered (recall that Tη is tempered).
Lemma 8.1 implies now that πη is square integrable.

It remains to consider the case a > a− + 2. Consider the unique irreducible
subrepresentation of δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ]) o Tη, which we denote by π′η.
By the inductive assumption, π′η is square integrable. Since

ν(a−1)/2ρo π′η ↪→ ν(a−1)/2ρo δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])o Tη ↪→ Πη

and Πη has a unique irreducible subrepresentation, which is πη, we get

πη ↪→ ν(a−1)/2ρo π′η.

Now, in the same way as above, from (9-7) we get

sGL(πη) ≤ ν(a−1)/2ρ× sGL(π′η).

Lemma 3.5 implies the square integrability.

Additional information about representations πη and their Jacquet modules in
the case of cuspidal π can be found in [T3].
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10. Square integrability II

In this section, we shall continue to use the notation introduced in the last
section.

For the proof of Proposition 9.1, it remains to show the square integrability of
πη in the case of non-cuspidal π. We shall prove the proposition by induction. The
basis of the induction is provided by Proposition 7.1. The inductive assumption is:
the claim of Proposition 9.1 holds for all π, ρ, a and a− satisfying

(a+ a−)/2 + deg Jord(π) < n.

Then Lemma 9.2 implies that each admissible triple Jord, πcusp, ε of degree < n
corresponds to some square integrable representation.

In this section we shall suppose

(a+ a−)/2 + deg Jord(π) = n.

Denote

(10-1) b = max
{
a′ ∈ Jordρ(π); a′ − 2 6∈ Jordρ(π),

or a′ − 2 ∈ Jordρ(π) and επ(a′) = επ(a′ − 2),

or a′ = 2 and επ(a′) = 1
}
.

Suppose that the set on the right-hand side of (10-1) is empty. This assumption
first implies that π is strongly positive. Further, this and (2-6) imply Jordρ(π) =
Jordρ(πcusp). Thus, φ(ai) = ai for all i. This implies that the representation (7-10)
is cuspidal. Thus, π must be cuspidal (see the seventh section). This contradicts
our assumption. Therefore, since π is not cuspidal, b is well defined.

Now we shall consider all possible relations among a, a− and b.

10.1. First we shall analyze the case

b < a−.(10-2)

The definition of b implies

max Jordρ(π) ≤ a− − 2(10-3)

(if m = max Jordρ(π) ≥ a−, then (9-1) implies m > a, which implies that the
set {a′ ∈ Jordρ(π); a′ > a} is non-empty; denote the minimum of it by m′; then
clearly m′ − 2 6∈ Jordρ(π), which implies m′ ≤ b, and further a− < a < m′ ≤ b;
this contradicts (10-2)).

From this it follows directly that:

factors of π are contained in {ν−(a−−1)/2+1ρ, ν−(a−−1)/2+2ρ, . . . , ν(a−−1)/2−1ρ}.
(10-4)

We can get this also from Lemma 5.2 (this lemma can give more precise information
about factors).

First we shall prove the following

Lemma. Suppose b < a−. Then πη has no factors in the set X = {ν−(a−1)/2−zρ,
z ∈ Z+}.
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Proof. First note that (10-4) implies that π has no factors in X . This, (1-2) and
(1-4) imply that πη has no factors in the set {ν−(a−1)/2−zρ, z ∈ N}. Therefore, it
remains to show that ν−(a−1)/2ρ is not a factor of πη. Suppose that it is a factor.

Since ν−(a−1)/2−1ρ is not a factor of πη by the above discussion, we can apply
Lemma 3.4 to πη for τ = ν−(a−1)/2ρ. Then

πη ↪→ δ([ν−(a−1)/2ρ, ν(a′−1)/2ρ])o σ(10-5)

for some irreducible representation σ and for a′ ∈ Z such that a + a′ ∈ 2Z and
(a′ − 1)/2− (−(a− 1)/2) ≥ 0 (i.e. a′ ≥ −a+ 2). Now (10-5) implies that

ν(a′−1)/2ρ⊗ ν(a′−1)/2−1ρ⊗ · · · ⊗ ν−(a−1)/2ρ⊗ ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρl ⊗ πcusp(10-6)

is an irreducible subquotient (actually a quotient) of a corresponding Jacquet mod-
ule of πη, for some irreducible cuspidal representations ρi.

Recall

πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π.(10-7)

We shall consider two possible relations of a− and a′. Suppose first

a′ ≤ a−.
The transitivity of Jacquet modules implies that (10-6) is a subquotient of a stan-
dard Jacquet module of s((a+a−)/2)(πη). Therefore, there exists an irreducible sub-
quotient σ⊗τ of s((a+a−)/2)(πη) such that (10-6) is a subquotient of a corresponding
standard Jacquet module of σ ⊗ τ . Now a′ ≤ a− implies that ν−(a−1)/2ρ must be
in the support of σ (the support is defined in Proposition 1.10 of [Z], as we already
noted).

Note that (10-7) implies

σ ⊗ τ ≤ s((a+a−)/2)(πη) ≤ s((a+a−)/2)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).(10-8)

Write

(10-9) µ∗(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π)

=
( (a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])

⊗ δ([νi+1ρ, νjρ])
)
o µ∗(π).

Because of (10-4), the only terms in the above sum which can have an irreducible
subquotient σ′ ⊗ τ ′ such that ν−(a−1)/2ρ is in the support of τ ′ are

δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ])× σ′′ ⊗ τ ′′,
where σ′′ ⊗ τ ′′ ≤ µ∗(π) (then we must have i = j = (a − 1)/2 in the above sum).
Since σ⊗ τ is a subquotient of s((a+a−)/2)(πη), there is only one possibility for σ′′⊗
τ ′′: we must have σ′′ = 1 and τ ′′ = π. Thus σ⊗τ = δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])⊗π.
Now πη is a Langlands quotient of δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ]) o π by Lemma 4.4.
This and (10-7) contradict the reducibility of δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ])o π.

Therefore, we must have

a− < a′.
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Note that from the fact that (10-6) is a subquotient of a Jacquet module of πη,
Lemma 3.1 and Lemma 3.2 imply that

ν(a′−1)/2ρ⊗ γ ≤ s(p)(πη),

for some irreducible γ, such that ν−(a−1)/2ρ is a factor of γ. Further, (10-7) implies

ν(a′−1)/2ρ⊗ γ ≤ s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).(10-10)

Write

s(p)(π) =
∑
i

µi ⊗ λi(10-11)

as a sum of irreducible representations. Then (10-9) implies (recall that π satisfies
(L))

s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π) =
∑
i

µi ⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o λi

+ν(a−1)/2ρ⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])o π(10-12)

+ν(a−−1)/2ρ⊗ δ([ν−(a−−1)/2+1ρ, ν(a−1)/2ρ])o π.(10-13)

Since a− < a′, it follows that ν(a′−1)/2ρ ⊗ γ cannot be a subquotient of
(10-13). From (1-2), (1-4) and (10-4) we get that ν−(a−1)/2ρ is not a factor of
δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ]) o π (this term shows up in (10-12)). This implies
that ν(a′−1)/2ρ ⊗ γ is not a subquotient of (10-12). Therefore, ν(a′−1)/2ρ ⊗ γ is
a subquotient for some i of µi ⊗ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o λi. This implies
ν(a′−1)/2ρ ∼= µi. Now (10-11) and Lemma 3.6 imply a′ ∈ Jordρ(π). Since a− < a′,
we get a contradiction with (10-3). This contradiction ends the proof.

We shall now prove square integrability of πη in the case b < a−. Recall (9-4)

(10-14) πη ↪→ δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× Tη
↪→ ν(a−1)/2ρ× δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])× Tη.

Suppose a = a− + 2. Then (10-14) implies

sGL(πη) ≤
(
ν(a−1)/2ρ+ ν−(a−1)/2ρ

)
× sGL (Tη) .(10-15)

Now the above lemma implies

sGL(πη) ≤ ν(a−1)/2ρ× sGL (Tη) .(10-16)

Since Tη is a tempered representation, Lemma 3.5 implies that πη is tempered.
Now Lemma 8.1 implies that πη is square integrable.

Suppose now a > a− + 2. Then denote by π′η the irreducible subrepresentation
of

δ([ν(a−−1)/2+1ρ, ν(a−1)/2−1ρ])o Tη

(which is unique; see section 9). Then the inductive assumption implies that π′η is
square integrable. Since the representation Πη from (9-5) has a unique irreducible
subrepresentation, and both πη and ν(a−1)/2−1ρ o π′η embed into it, we conclude
that

πη ↪→ ν(a−1)/2ρo π′η.
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Applying sGL to both sides and using (1-2), we get from the above lemma

sGL(πη) ≤ ν(a−1)/2ρ× sGL(π′η).(10-17)

Now Lemma 3.5 implies the square integrability of πη. This ends the proof of the
square integrability of πη in the case b < a.

It remains to consider the case a− < b. The condition (9-1) implies a < b.

10.2. We shall now assume

a < b.(10-18)

Then

b > 4.

10.2.1. First we shall consider the case

b− 2 ∈ Jordρ(π).(10-19)

Then clearly b− = b− 2. The definition (10-1) of b implies

επ(b) = επ(b−).(10-20)

Note that (10-19) and (9-1) imply

a < b−.

Therefore,

a+ 2 < b.

Note that (10-19) and the definition (10-1) of b imply that b is the maximum of all
a′ ∈ Jordρ(π) such that a′− ∈ Jordρ(π) is defined and eπ(a′) = eπ(a′−). Therefore,
Lemma 5.2 implies that

π has no factors in {ν−(b−1)/2−zρ; z ∈ Z+}.(10-21)

By Lemma 5.1, there exists an irreducible square integrable representation π′

such that

π ↪→ δ([ν−(b−−1)/2ρ, ν(b−1)/2ρ])o π′.(10-22)

Proposition 2.1 implies

Jord(π′) = Jord(π) \ {(ρ, b), (ρ, b−)}.(10-23)

Further, (10-7), (10-22), and the facts (a − 1)/2 + 1 < (b − 1)/2, b = b− + 2 and
(a− 1)/2 ≤ (b− − 1)/2 (which implies −(b− − 1)/2 ≤ −(a− − 1)/2) imply

πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× δ([ν−(b−−1)/2ρ, ν(b−1)/2ρ])o π′ ↪→(10-24)

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(b−1)/2ρ× δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])o π′
(10-25)

∼= ν(b−1)/2ρ× δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.
(10-26)

Now we know that δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π′ has exactly two irreducible
subrepresentations. Denote them by π′η′ , η

′ ∈ {±1}. Thus⊕
η′∈{±1}

π′η′ ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′.(10-27)
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Applying the inductive assumption to π′η′ (these representations satisfy the condi-
tions of section 9), we get that they are square integrable. From Proposition 2.1,
we get

(10-28) Jord(π′η′ ) = Jord(π′) ∪ {(ρ, a), (ρ, a−)}
= (Jord(π) \ {(ρ, b), (ρ, b−)}) ∪ {(ρ, a), (ρ, a−)}.

Since b− 6∈ Jordρ(π′η′ ), the representation

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′(10-29)

reduces into a sum of two irreducible tempered representations (which are not
equivalent). Further, (10-27) implies that

⊕
η′∈{±1}

ν(b−1)/2 × δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′(10-30)

embeds into (10-26). The above discussion implies that (10-30) has at least four
irreducible subrepresentations (since (10-29) reduces into a sum of two irreducible
subrepresentation for each η′ ∈ {±1}).

Now we shall show that (10-26) has at most four irreducible subrepresentations
(the above discussion will imply that it has exactly four irreducible subrepresenta-
tions). First recall that (10-26) is isomorphic to (10-25). Therefore, it is enough to
see that (10-25) has at most four irreducible subrepresentations. Note that (10-25)
embeds into

ν(b−1)/2 × δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])

×δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′

↪→ ν(b−1)/2 × ν(a−1)/2ρ× ν(a−1)/2−1ρ× · · · × ν(a−−1)/2+1ρ(10-31)

×δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.

It is enough to prove that (10-31) has at most four irreducible subrepresentations.
Since each irreducible subrepresentation of (10-31) has

t = ν(b−1)/2 ⊗ ν(a−1)/2ρ⊗ ν(a−1)/2−1ρ⊗ · · · ⊗ ν(a−−1)/2+1ρ(10-32)

⊗δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])⊗ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])⊗ π′

as a quotient of a corresponding Jacquet module, the fact that (10-31) has at most
four irreducible subrepresentations will follow from

Lemma. The multiplicity of t (defined in (10-32)), in a corresponding standard
Jacquet module of (10-31) is four.
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Proof. Denote the representation (10-31) by Ψ. Then

(10-33) µ∗ (Ψ) =
(
1⊗ ν(b−1)/2ρ+ ν(b−1)/2ρ⊗ 1 + ν−(b−1)/2ρ⊗ 1

)
×
( (a−1)/2∏
i=(a−−1)/2+1

(
1⊗ νiρ+ νiρ⊗ 1 + ν−iρ⊗ 1

))

×
( (a−−1)/2∑
i′=−(a−−1)/2−1

(a−−1)/2∑
j′=i′

δ([ν−i
′
ρ, ν(a−−1)/2ρ])× δ([νj′+1ρ, ν(a−−1)/2ρ])

⊗ δ([νi
′+1ρ, νj

′
ρ])
)

×
( (b−−1)/2∑
i′′=−(b−−1)/2−1

(b−−1)/2∑
j′′=i′′

δ([ν−i
′′
ρ, ν(b−−1)/2ρ])× δ([νj′′+1ρ, ν(b−−1)/2ρ])

⊗ δ([νi′′+1ρ, νj
′′
ρ])
)
o µ∗(π′).

If t is a subquotient of a corresponding Jacquet module of Ψ, by the transitivity of
Jacquet modules, there exists an irreducible subquotient τ⊗σ of s(p(a−a−+2)/2)(Ψ),
such that t is a subquotient of a corresponding standard Jacquet module of τ ⊗ σ.
Now we shall examine (10-33) to find all such τ⊗σ. We shall analyze which indexes
and terms in the products and sums we can take to get such τ⊗σ for a subquotient.

Note that the support of τ is {ν(b−1)/2, ν(a−1)/2ρ, ν(a−1)/2−1ρ, . . . , ν(a−−1)/2+1ρ}
(in general, the support is a multiset, but here it is actually a set; therefore we are
in the regular situation).

First, to get τ⊗σ, we must not take ν−(b−1)/2ρ⊗1 and ν−iρ⊗1, since ν−(b−1)/2ρ
and ν−iρ are not in the support of τ .

Suppose that we get τ⊗σ from some term where we take 1⊗νiρ in the right-hand
side of (10-33). Then to get it in the support of τ , it cannot come from ν(b−1)/2ρ⊗1
and it cannot come from indexes i′, j′ since i > (a−−1)/2. It also cannot come from
indexes i′′, j′′, since then we would also have (b− − 1)/2 in the support of τ , which
is not the case. From this we conclude that there exist irreducible τ ′⊗σ′ ≤ µ∗(π′),
such that the support of τ ′ is non-empty and contained in the support of τ . This
implies (using Lemma 3.6) that either b ∈ Jordρ(π′) or 2l+ 1 ∈ Jordρ(π′) for some
(a−− 1)/2 + 1 ≤ l ≤ (a− 1)/2. But (10-23) and (9-1) imply that this is impossible.

Further, we must not take 1 ⊗ ν(b−1)/2ρ. Otherwise, since (b − 1)/2 is greater
than each of (a − 1)/2, (a− − 1)/2, (b− − 1)/2, to get ν(b−1)/2ρ in the support of
τ , we must have some τ ′ ⊗ σ′ with the same properties as in the above paragraph.
We have seen that this implies the contradiction.

Therefore, we have proved that τ must be subquotient of

ν(b−1)/2 × ν(a−1)/2ρ× ν(a−1)/2−1ρ× · · · × ν(a−−1)/2+1ρ,(10-34)

multiplied by other terms. But since τ ⊗ σ is a subquotient of s(p(a−a−+2)/2)(Ψ),
we see that all other terms are equal to 1. Thus, τ is a subquotient of (10-34). This
implies that σ must be a subquotient of

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′.(10-35)
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Finally, note that the multiplicity of ν(b−1)/2 ⊗ ν(a−1)/2ρ ⊗ ν(a−1)/2−1ρ ⊗ · · · ⊗
ν(a−−1)/2+1ρ in a corresponding (standard) Jacquet module of (10-34) is one. On
the other hand, (ii) of Lemma 4.3 implies that the multiplicity of

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])⊗ δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])⊗ π′

in a corresponding Jacquet module of (10-35) is four. Therefore the multiplicity
of t in a corresponding standard Jacquet module of Ψ is 1 · 4 = 4. This ends the
proof.

Since (10-30) embeds into (10-26), and since we have just shown that both repre-
sentations have exactly four irreducible subrepresentations, (10-24) – (10-26) imply
that πη embeds into (10-30). This and (1-2) imply

(10-36) sGL(πη) ≤
(
ν(b−1)/2 + ν−(b−1)/2

)
× sGL

 ⊕
η′∈{±1}

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

 .

From (10-21), (10-7), b > a+ 2 (and (1-2)), we get that ν−(b−1)/2ρ is not a factor
of πη. Thus, (10-36) implies

sGL(πη) ≤ ν(b−1)/2 × sGL

 ⊕
η′∈{±1}

δ([ν−(b−−1)/2ρ, ν(b−−1)/2ρ])× π′η′

 .(10-37)

Now Lemma 3.5 implies that πη is tempered (note that we did not use in the proof
of Lemma 3.5 that τ is irreducible). Lemma 8.1 implies now that πη is square
integrable. This ends the proof of the square integrability in the case b − 2 ∈
Jordρ(π) (and a < b).

10.2.2. It remains to consider the case b − 2 6∈ Jordρ(π) (we continue to assume
a < b). First we have a general

Lemma. If b − 2 6∈ Jordρ(π), then there exists an irreducible square integrable
representation π′′ such that

π ↪→ ν(b−1)/2ρo π′′(10-38)

and (then)

Jord(π′′) = (Jord(π) \ {(ρ, b)}) ∪ {(ρ, b− 2)}.(10-39)

Remark. The proof of the lemma holds if one takes any a′ ∈ Jordρ(π) instead of b,
which satisfies

a′ > 2 and a′ − 2 6∈ Jordρ(π).

Note that b satisfies the above condition.

Proof. We prove the lemma, and more generally the remark, by induction (for our
fixed π, assuming that our general inductive assumption holds). We need to show
the existence of an irreducible square integrable representation π′′ such that

π ↪→ ν(a′−1)/2ρo π′′,(10-38′)

Jord(π′′) = (Jord(π) \ {(ρ, a′)}) ∪ {(ρ, a′ − 2)}.(10-39′)
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Since (10-38′) and Proposition 2.1 imply (10-39′), for the proof is enough to show
the existence of the embedding (10-38′).

We discuss several possibilities.
First suppose that π is strongly positive. Now we shall repeat a part of the

construction in the seventh section, using the notation that we were using there.
First, π embeds into some representation σ0 defined in (7-10). Let a′ = ai (then
i = 1 and ai ≥ 3, or i > 1 and ai−1 ≤ ai − 4). Denote by σ′0 the representation
that one gets by substituting ν(ai−1)/2ρ× δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2−1ρ]) instead of
δ([ν(φ(ai)+1)/2ρ, ν(ai−1)/2ρ]) in (7-10) (all other terms remaining the same, as well
as the order of the multiplication). Let σ′′0 be the representation that one obtains
from σ′0, dropping ν(ai−1)/2ρ from the definition of σ′0. Now a′ − 2 6∈ Jordρ(π)
implies

σ′0
∼= ν(ai−1)/2ρo σ′′0 .

Further, by the seventh section, σ′′0 has an irreducible square integrable subrepresen-
tation, which we shall denote by π′′ (for this we again use a′−2 6∈ Jordρ(π)). Since
σ′0 has a unique irreducible subrepresentation by Lemma 4.1, then π ↪→ σ0 ↪→ σ′0
and ν(ai−1)/2ρo π′′ ↪→ ν(ai−1)/2ρo σ′′0 ∼= σ′0 imply (10-38′).

Suppose now that π is not strongly positive. Then we can choose c, c− ∈
Jordρ(π) such that επ(c) = επ(c−) and by Lemma 5.1 there exists an irreducible
square integrable representation π′′′ such that

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′.(10-40)

Proposition 2.1 implies

Jord(π′′′) = Jord(π) \ {(ρ, c), (ρ, c−)}.(10-41)

Note that

[c−, c] ∩ Jordρ(π′′′) = ∅.
We shall consider three cases.
First consider the case a′ = c. Now a′ = c ≥ c− + 4. This and (10-40) imply

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′(10-42)

↪→ ν(c−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2−1ρ])o π′′′(10-43)

↪→ ν(c−1)/2ρ× δ([ν(c−−1)/2+1ρ, ν(c−1)/2−1ρ])(10-44)

×δ([ν−(c−−1)/2ρ, ν(c−−1)/2−1ρ])o π′′′.

Now δ([ν−(c−−1)/2ρ, ν(c−1)/2−1ρ]) o π′′′ has two irreducible subrepresentations,
which are square integrable by our general inductive assumption (see (10-41)). De-
note them by π′′′η′ , η

′ ∈ {±1}. By Lemma 4.5 and Remark 4.2, (10-44) has at most
two irreducible subrepresentations. Therefore (10-43) has at most two irreducible
subrepresentations. This implies π ↪→ ν(c−1)/2ρ o π′′′η′ for some η′. This proves
(10-38′).

Now let a′ = c−. Then

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′

↪→ δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])× ν−(c−−1)/2ρo π′′′

∼= δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])× ν(c−−1)/2ρo π′′′.
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The last equivalence follows from Lemma 5.4.1 of [M2] (since (c−−1)/2 = (d+1)/2
for some d ∈ Jordρ(π) would imply d = c− − 2 = a′ − 2 ∈ Jordρ(π), which
contradicts our assumptions). From the above embeddings, we get

π ↪→ ν(c−−1)/2ρ× δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])o π′′′

= ν(c−−1)/2ρ× δ([ν−(c−−2−1)/2ρ, ν(c−1)/2ρ])o π′′′.

Note that

[c− − 2, c] ∩ Jordρ(π′′′) = ∅

(since a′ − 2 = c− − 2 6∈ Jordρ(π)). Therefore

δ([ν−(c−−2−1)/2ρ, ν(c−1)/2ρ])o π′′′

has exactly two irreducible subrepresentations. Denote them by π′′′η′ , η
′ ∈ {±1}.

They are square integrable by the general inductive assumption. Further

π ↪→ ν(c−−1)/2ρ× δ([ν−(c−−1)/2+1ρ, ν(c−1)/2ρ])o π′′′

↪→ ν(c−−1)/2ρ×δ([ν(c−−1)/2ρ, ν(c−1)/2ρ])×δ([ν−(c−−1)/2+1ρ, ν(c−−1)/2−1ρ])oπ′′′.

Using [c−, c] ∩ Jordρ(π′′′) = ∅, in a similar way as in the proof of Lemma 4.5, one
gets that the last representation has at most two irreducible subrepresentations (the
only difference from the proof of Lemma 4.5 is that one does not use regularity,
but instead uses the well-known fact that ν(c−−1)/2ρ×δ([ν(c−−1)/2ρ, ν(c−1)/2ρ]) has
multiplicity one in ν(c−−1)/2ρ ×

∏(c−c−)/2
i=0 ν(c−−1)/2+iρ. From this and the above

embeddings we conclude that

π ↪→ ν(c−−1)/2ρo π′′′η′

for some η′ ∈ {±1}. This shows (10-38′) in the case a′ = c−.
Suppose finally that a′ 6∈ {c−, c}. Then a′ 6∈ [c−, c]. Further note that

ν(a′−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ]) ∼= δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])× ν(a′−1)/2ρ

since either a′ < c− or (c − 1)/2 + 1 < (a′ − 1)/2 by our assumptions. Then
c ≤ a′− 4. Further, a′ ∈ Jordρ(π′′′) by (10-41) and a′− 2 6∈ Jordρ(π′′′). Therefore,
we can apply the inductive assumption. Applying it, we get that there exists a
square integrable representation π′′′′ such that

π′′′ ↪→ ν(a′−1)/2ρo π′′′′,(10-45)

(10-46) Jord(π′′′′) = (Jord(π′′′) \ {(ρ, a′)}) ∪ {(ρ, a′ − 2)}
= (Jord(π) \ {(ρ, c), (ρ, c−), (ρ, a′)}) ∪ {(ρ, a′ − 2)}.

Now

π ↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′(10-47)

↪→ δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])× ν(a′−1)/2ρo π′′′′(10-48)

∼= ν(a′−1)/2ρ× δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ])o π′′′′(10-49)

↪→ ν(a′−1)/2ρ× δ([ν(c−−1)/2+1ρ, ν(c−1)/2ρ])(10-50)

×δ([ν−(c−−1)/2ρ, ν(c−−1)/2ρ])o π′′′′.
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Now (10-46) implies that δ([ν−(c−−1)/2ρ, ν(c−1)/2ρ]) o π′′′′ has exactly two irre-
ducible subrepresentations, and they are square integrable by the general inductive
assumption. Denote them by π′′′′η′ , η′ ∈ {±}. Lemma 4.5, Remark 4.2 and (4-46)
imply that (10-50) has at most two irreducible subrepresentations. Then, the same
holds for (10-49). This implies that π ↪→ ν(a′−1)/2ρ× π′′′′η′ for some η′. This proves
(10-38′). Now the proof of the lemma and the remark is complete.

Using this lemma, we get

(10-51) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(b−1)/2ρo π′′.
Recall a < b. We shall consider separately the cases of a+ 2 < b and a+ 2 = b.

10.2.2.1. First we shall consider the case

a+ 2 < b.

Since (a− 1)/2 + 1 < (b− 1)/2, (10-51) implies

(10-52) πη ↪→ ν(b−1)/2ρ× δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π′′

↪→ ν(b−1)/2ρ× δ([ν(a−−1)/2+1ρ, ν(a−1)/2ρ])× δ([ν−(a−−1)/2ρ, ν(a−−1)/2ρ])o π′′.

Now (10-39) implies that δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π′′ has exactly two irre-
ducible subrepresentations. They are square integrable by the inductive assump-
tion. Denote them by π′′η′ , η

′{±1}. Further, (10-39), Lemma 4.5 and Remark
4.2 imply that the representation in the second row of (10-52) has at most two
irreducible subrepresentations. This implies

πη ↪→ ν(b−1)/2ρo π′′η′(10-53)

for some η′. Note that πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])oπ and Lemma 5.2 applied
to π imply that ν(b−1)/2ρ is not a factor of πη (similarly as in 10.2.1; see (10-21)).
Now (1-2) and (10-53) imply sGL(πη) ≤ ν(b−1)/2ρ × sGL(π′′η′). Now Lemma 3.5
implies that πη is square integrable.

Therefore, we have settled the case a + 2 < b (recall that we assumed b − 2 6∈
Jordρ(π)). Finally, it remains to consider only the case b = a+ 2.

11. End of proof of square integrability

We continue with the notation of the last section, and assume additionally that

a+ 2 = b.

This is the only case where we have not yet proved the square integrability of πη.
We shall suppose now that πη is not square integrable.
If b− ∈ Jordρ(π) is not defined, then the definition of b implies that π is strongly

positive. Suppose that b− ∈ Jordρ(π) is defined. Then a+ 2 = b and (9-1) imply
b− ≤ a− − 2. Now Lemma 3.6 implies that ν−(b−−1)/2−1, ν−(b−−1)/2−2, . . . are not
factors of π. Note that −(a− − 1)/2 ≤ −(b− − 1)/2− 1. Therefore, we have

π has no factors in the set {ν−(a−−1)/2−zρ; z ∈ Z+},(11-1)

regardless if b− is defined or not. Recall further

πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π.(11-2)
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This, (1-2), (1-4) and (11-1) imply that

πη has no factors in the set {ν−(a−1)/2−1−zρ; z ∈ Z+}.(11-3)

Suppose that ν−(a−1)/2 is not a factor of πη. Then from (11-2) it follows that

πη ↪→ ν(a−1)/2ρ× δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ])o π.

Using the inductive assumption, from this we get in the same way as before (for
example in 10.1) that πη is square integrable.

Therefore, ν−(a−1)/2 is a factor of πη.
Recall that Lemma 10.2 implies

π ↪→ ν(b−1)/2ρo π′′,(11-4)

where

Jordρ(π′′) = (Jordρ(π) \ {b}) ∪ {a}.(11-5)

We need to keep in mind all the time that b = a + 2, which implies (b − 1)/2 =
(a− 1)/2 + 1. Now

(11-6) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π

↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o ν(b−1)/2ρo π′′.
Now we two technical lemmas. The first one is very simple.

11.1. Lemma. If νzρ⊗ σ ≤ µ∗(π) for some irreducible representation σ and z ∈
(1/2)Z, then z ≤ (b− 1)/2.

Proof. Suppose z > (b − 1)/2. This implies 2z + 1 > b. Lemma 3.6 implies
2z+1 ∈ Jordρ(π). Lemma 3.1 and Lemma 3.2 imply the existence of an irreducible
representation σ′, such that π ↪→ ν2z+1ρ o σ′. By the definition of b, 2z − 1 ∈
Jordρ(π) (since 2z + 1 > b). Now the definition of the partial function ε implies
ε(2z − 1, 2z + 1) = 1. This contradicts the definition of b (since 2z + 1 > b).

11.2. Lemma. (i) If there exists an embedding

πη ↪→ δ([ν−(a−1)/2, νl])o σ′,(11-7)

with σ′ irreducible and l ∈ {−(a− 1)/2 + z; z ∈ Z+}, then l = (b − 1)/2.
(ii) There exists an embedding

πη ↪→ δ([ν−(a−1)/2, ν(b−1)/2])o σ′,(11-8)

with irreducible σ′.
(iii) Any representation σ′ which satisfies (ii), must be square integrable. Further,

Jordρ(σ′) = (Jordρ(π) \ {b}) ∪ {a−}.

Proof. The proof of (i) and (ii) proceeds in a similar way as the proof of Lemma
10.1.

Since ν−(a−1)/2−1ρ is not a factor of πη, Lemma 3.4 implies

πη ↪→ δ([ν−(a−1)/2ρ, ν(a′−1)/2ρ])o σ,(11-9)

for some irreducible σ and a′ ∈ Z such that a+a′ ∈ 2Z and (a′−1)/2−(−(a−1)/2) ≥
0. Frobenius reciprocity implies that

ν(a′−1)/2ρ⊗ ν(a′−1)/2−1ρ⊗ · · · ⊗ ν−(a−1)/2ρ⊗ ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρl ⊗ πcusp(11-10)
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is an irreducible subquotient of a corresponding Jacquet module of πη (ρi are irre-
ducible cuspidal representations). Now (11-60) must be a subquotient of a corre-
sponding Jacquet module of some irreducible subquotient τ ⊗ σ of s((a+a−)/2)(πη).

Suppose first a′ ≤ a−. This implies that ν−(a−1)/2ρ must be in the support of
τ . Clearly, τ ⊗ σ ≤ s((a+a−)/2)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π). Now (10-9) and
(11-1) imply σ ⊗ τ = δ([ν−(a−1)/2ρ, ν(a−−1)/2ρ]) ⊗ π. Lemma 4.4 implies that πη
is a Langlands quotient of δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ]) o π, which contradicts the
reducibility of δ([ν(a−−1)/2ρ, ν(a−1)/2ρ])o π.

Suppose now a− < a′. Since (11-10) is a subquotient of a Jacquet module of πη,
Lemma 3.1 and Lemma 3.2 imply that ν(a′−1)/2ρ⊗γ ≤ s(p)(πη), for some irreducible
representation γ, such that ν−(a−1)/2ρ is a factor of γ. Now (11-2) implies

ν(a′−1)/2ρ⊗ γ ≤ s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π).

Write s(p)(π) =
∑

i µi ⊗ λi as a sum of irreducible representations (as we did in
(10-11)). In 10.1 we have computed the formula for

s(p)(δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])o π)

(the first displayed formula after (10-11)). We shall use this formula now. The
present assumption a− < a′ implies that ν(a′−1)/2ρ⊗ γ cannot be a subquotient of
(10-13). Further (1-2), (1-4) and (11-1) imply that ν−(a−1)/2ρ is not a factor of the
representation δ([ν−(a−−1)/2ρ, ν(a−1)/2−1ρ]) o π. This implies that ν(a′−1)/2ρ ⊗ γ
is not a subquotient of (10-12). Therefore, ν(a′−1)/2ρ ∼= µi for some i. Lemma 3.6
now implies a′ ∈ Jordρ(π). Since a− < a′, (9-1) implies a < a′. Now (9-1) implies
b ≤ a′.

Suppose b < a′. Then, to get δ([ν−(a−1)/2ρ, ν(a′−1)/2−1ρ])⊗ σ′ as a subquotient
of (10-9) we first need to take i = (a − 1)/2 in (10-9) (since ν−(a−1)/2ρ is not a
factor of π). Therefore, we must have δ([ν(a−−1)/2+1ρ, ν(a′−1)/2−1ρ])⊗ σ′′ ≤ µ∗(π)
for some irreducible representation σ′′. This contradicts the above lemma (since
we would have ν(a′−1)/2−1ρ ⊗ σ′′′ ≤ µ∗(π) for some irreducible representation σ′′′,
with (a′ − 1)/2 > (b − 1)/2). This proves (i).

Now (ii) follows from (i) and (i) of Lemma 3.4.
It remains to prove (iii). From 10.2.2, we know that there exists an irreducible

square integrable representation π′′ and an embedding:

π ↪→ ν(b−1)/2ρ× π′′.
Moreover we know by Proposition 2.1 that

Jordρ(π′′) = (Jordρ(π) \ {b}) ∪ {b− 2}.
Further, since a = b − 2 ∈ Jordρ(π′′) and (a − 2) /∈ Jordρ(π′′), we can again use
Remark 10.2.2. Continuing to use this remark several times (in the cases when we
can), we shall get

π ↪→ ν(a−−1)/2+1ρ× · · · × ν(a−1)/2ρ× ν(b−1)/2ρo π′,(11-11)

where

Jordρ(π′) = (Jordρ(π) \ {b}) ∪ {a−}.(11-12)

In particular, if a′ ∈ Jordρ(π′), then

(a′ − 1)/2 /∈ [(a+ 1)/2, (a− + 1)/2].(11-13)
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Now (11-11) and the definition of πη imply that we have the embedding

(11-14) πη ↪→ δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])

× ν(a−−1)/2+1ρ× · · · × ν(a−1)/2ρ× ν(a+1)/2ρo π′.
By (ii), we have the embedding

πη ↪→ δ([ν−(a−1)/2ρ, ν(a+1)/2ρ])× σ′.(11-15)

Consider any such embedding. Frobenius reciprocity implies that

δ([ν−(a−1)/2ρ, ν(a+1)/2ρ])⊗ σ′(11-16)

is a subquotient of a corresponding Jacquet module of

δ([ν−(a−−1)/2ρ, ν(a−1)/2ρ])× ν(a−−1)/2+1ρ× · · · × ν(a−1)/2ρ× ν(a+1)/2ρo π′.
(11-17)

We shall show now that σ′ ∼= π′. This (and (11-12)) will imply (iii).
First we shall write µ∗ of (11-17):

(11-18)

 (a+1)/2∏
k=(a−−1)/2+1

(
νkρ⊗ 1 + ν−kρ⊗ 1 + 1⊗ νkρ

)
×
(

(a−1)/2∑
i=−(a−−1)/2−1

(a−1)/2∑
j=i

δ([ν−iρ, ν(a−−1)/2ρ])× δ([νj+1ρ, ν(a−1)/2ρ])

δ([νi+1ρ, νjρ])

)
o µ∗(π′).

Now we shall analyze when we can get (11-16) for a subquotient of (11-18).
The first conclusion is that for k = (a+1)/2 we need to take the term ν(a+1)/2ρ⊗

1, since b 6∈ Jordρ(π′).
Now look at k = (a− 1)/2. Suppose that we have taken the term 1⊗ ν(a−1)/2ρ.

We consider two possibilities. Suppose j + 1 ≤ (a− 1)/2. Then i ≤ (a− 1)/2− 1.
Therefore, in the term δ([ν−(a−1)/2ρ, ν(a+1)/2ρ]) in (11-16), ν−(a−1)/2ρ must come
from µ∗(π′). This directly implies that π′ is not square integrable. Thus, j =
(a− 1)/2. This would imply that a ∈ Jordρ(π′). This cannot happen. Therefore,
for k = (a−1)/2 we must not take the term 1⊗ν(a−1)/2ρ (if we want to get (11-16)
for a subquotient). The two possibilities remain.

Suppose that we have taken the term ν−(a−1)/2ρ ⊗ 1. Then we need to take
−i ≥ −(a−1)/2 + 1 in (11-18). Suppose −i > −(a−1)/2 + 1. Since a 6∈ Jordρ(π′),
we get j + 1 ≤ (a − 1)/2. This implies that π′ is not square integrable. Thus
−i = −(a − 1)/2 + 1, i.e. i = (a − 1)/2 − 1. Now j = (a − 1)/2 − 1 or (a − 1)/2.
If j = (a− 1)/2, then a ∈ Jordρ(π′), which is impossible. Thus, j = (a− 1)/2− 1.
Now for the other k’s (i.e. when k < (a− 1)/2), we must take terms νkρ⊗ 1. This
implies σ′ ∼= π′.

The other possibility is that we have taken the term ν(a−1)/2ρ⊗ 1. This implies
j = (a−1)/2. Suppose −i > −(a−1)/2 (i.e. i < (a−1)/2). This easily implies that
π′ is not square integrable. Therefore, i = (a − 1)/2. This implies j = (a − 1)/2.
Again for the remaining k’s, one must take the terms νkρ ⊗ 1. This again implies
σ′ ∼= π′.

The proof of (iii) is now complete.
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Suppose b = max(Jordρ). Now (iii) of the above lemma and the tenth section
imply the contradiction. Thus, b < max(Jordρ). Nevertheless, using the above
lemma, in finitely many steps we come to the contradiction.

This contradiction implies that our assumption that πη is not square integrable
cannot hold. Thus, πη is square integrable. This ends the proof of the square
integrability.

Note that the representations πη are constructed recursively. There are the cases
when one can define them more directly. There are examples of constructions of
families of such representations in [T4] (and proofs of their square integrability,
together with explicit estimates of their Jacquet modules and description of some
other properties).

12. Jordan blocks and cuspidal reducibility

In this section only, we shall not assume that (BA) holds (and also we shall not
assume that (A) holds). For simplicity, we shall assume in this section that groups
Sn are split.

Let ρ be an irreducible F ′/F -selfdual cuspidal representation of GL(p) and let σ
be an irreducible cuspidal representation of Sq. We are interested in the reducibility
points of the family ναρ o σ, α ∈ R. First, ναρ o σ reduces for some α ∈ R. In
all the known cases when the reducibility points of such families are computed, the
following holds:

if ναρo σ reduces, then α ∈ (1/2)Z and νβρo σ is irreducible for β ∈ R \ {±α}.
(HI)

This is expected to hold in general. The first general result in this direction is due
to Shahidi ([Sh1]). Shahidi proved that (HI) holds if σ is generic (he showed much
more; see below). Assume that (HI) holds for ρ and σ (note that (BA) implies
(HI)). Then the non-negative reducibility point is unique. We shall denote it by

α(ρ, σ).

Shahidi proved

if σ is generic, then α(ρ, σ) ∈ {0,±1/2,±1}.(12-1)

In particular, this implies, for the simplest case when σ is the trivial representation
1 of the trivial group, that

α(ρ, 1) ∈ {0,±1/2,±1}.(12-2)

In the lemma below, we shall see that (BA), which comes from a study of Arthur’s
conjectures, implies that the following holds:

(D) if ναρo σ reduces, then α− α(ρ, 1) ∈ Z
and νβρo σ is irreducible for β ∈ R \ {±α}.

Obviously, (D) implies (HI) (using (12-2)).

12.1. Lemma. The assumptions (BA) and (D) are equivalent.

Proof. Assume that (D) holds.
Suppose that ρ o σ reduces. Then by (D) and (12-2), ρ o 1 or νρ o 1 reduces.

This implies (by Shahidi’s work) that L(ρ,Rdρ , s) has no pole at s = 0 (see also (i)
of Remark 2.3). Thus if a ∈ Jordρ(σ), then a is odd. For any odd a ∈ N, δ(ρ, a)oσ
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reduces by Proposition 4.4 of [T2]. Thus, Jordρ(σ) = ∅. Therefore, (BA) holds for
this pair.

Let ν1/2ρ o σ be reducible. Then ν1/2ρ o 1 reduces by (D). This implies that
L(ρ,Rdρ, s) has a pole at s = 0. Thus, each a ∈ Jordρ(σ) must be even. Now
Proposition 4.3 of [T2] implies Jordρ(σ) = ∅. Thus, (BA) holds also in this case.

Suppose now that νb/2ρ o σ reduces for some b ∈ N, b > 1. We shall consider
first the case b ∈ 2N. Then ρo 1 or νρ o 1 reduces by (D) and (12-2). Therefore,
L(ρ,Rdρ, s) has no pole at s = 0. Therefore, a ∈ Jordρ(σ) must be odd. Now
Theorem 13.2 of [T2] (see also the remark below) implies

Jordρ(σ) = {1, 3, . . . , b− 1}.

Therefore, (BA) holds again. Suppose now that b is odd. Then ν1/2ρ o 1 reduces
by (D) and (12-2). This implies that L(ρ,Rdρ, s) has a pole at s = 0, and further
a ∈ Jordρ(σ) must be even. Theorem 13.2 of [T2] implies

Jordρ(σ) = {2, 4, . . . , b− 1}.

Therefore, (BA) holds.
Assume now that (BA) holds. Let νb/2ρ o σ reduce for some b ∈ Z+. First

consider the case of even b. Suppose Jordρ(σ) = ∅. Then (BA) implies that
L(ρ,Rdρ, s) has no pole at s = 0. This implies that ρ o 1 or νρ o 1 reduces.
Therefore, (D) holds in this case. Suppose now Jordρ(σ) 6= ∅. Then by (BA), from
(b− 1 + 1)/2 = b/2 it follows that b− 1 ∈ Jordρ(σ). Since b− 1 is odd, (J-1′) from
Remark 2.3 implies that ρ o 1 or νρo 1 reduces. Again, (D) holds. Now consider
the case of odd b. Suppose first Jordρ(σ) = ∅. Now (BA) implies that L(ρ,Rdρ, s)
has a pole at s = 0. This implies that ν1/2ρo 1 reduces. Thus, (D) holds. Suppose
now Jordρ(σ) 6= ∅. Then again b − 1 ∈ Jordρ(σ). Since b − 1 is even, L(ρ,Rdρ, s)
has a pole at s = 0, and therefore ν1/2ρo 1 reduces, which implies that (D) holds
also in this case. This completes the proof.

We have not proved that (HI) implies (BA). This is certainly not easy (one needs
to use the L-function defined by Shahidi). If one wants to avoid the use of the L-
functions (as done in 4.1 of [M5]) in the definition of the Jordan block (this is also
done in Remark 14.5 of this paper), (HI) is enough for the definiton of the Jordan
block (see 4.2 of [M5]). Therefore, (HI) seems to be the most important property
to be proved. This seems to be a difficult problem.

12.2. Remark. Note that in Theorem 13.2 of [T2] we have the assumption char(F ′)
= 0. This assumption is used in the proof of that theorem to prove irreducibility.
Note that the irreducibility that we needed in the proof of the last lemma is in
the unitarizable case. This irreducibility follows in the same way as in the proof
of Propositions 4.1 and 4.2. Namely, let δ(∆) be an F ′/F -selfdual irreducible
(unitarizable) square integrable representation of a general linear group such that
ρ′oσ is irreducible for every ρ′ ∈ ∆. Then proofs of Propositions 4.1 and 4.2 imply
that δ(∆) o σ is irreducible. These proofs do not require char(F ′) = 0.

We shall now write one direct consequence of the proof of Proposition 12.1. From
the (non-negative) reducibility point α(ρ, σ) = b/2 ∈ (1/2)Z+, we can write directly

Jordρ(σ) = {b− 1− 2i ; i ∈ Z+ and b − 1− 2i ∈ N}.(12-3)
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Observe that for the trivial representation we have

Jord(1SO(1)) = ∅,
Jord(1Sp(0)) = {(1GL(1), 1)}

(depending on the series of the groups with which we are working).
There is one type of ρ for which the problem of computing the reducibility

points of induced representations with irreducible cuspidal representations σ can
be in principle solved using the known facts. It is the case where ρ is a quadratic
character. One has to use ideas of Adams, Kudla and Rallis to interpret the re-
ducibility points in terms of the Howe duality ([W2] is an example of this kind).
This interpretation is a local analogue of a more difficult global result explained
in [KuR] (in particular of 6.1 in [KuR]; see also [M4]). A particular case which
is completely written is the case where the cuspidal representation σ is quadratic
unipotent ([M3]).

13. Tempered representations

We continue to assume (BA) again (until the end of the paper).
Fix an irreducible (unitarizable) square integrable representation

δ(ρ, a)

of a general linear group (recall that δ(ρ, a) denotes δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])). Let
π be a similar representation of Sq.

If ρ is not F ′/F -selfdual, it is well known that

δ(ρ, a)o π

is irreducible (one can also get this easily from (1-1) and Theorem 4.9 of [T1]).
Therefore, to describe the reducibility of δ(ρ, a) o π, it remains to consider the

case of F ′/F -selfdual irreducible cuspidal representations ρ. We shall now assume
that ρ is F ′/F -selfdual.

The composition of the standard intertwining operators

νsδ(ρ, a)o π → ν−sδ(ρ, a)o π → νsδ(ρ, a)o π

can be computed in terms of the L-functions using (BA) (such computations are
carried out in [M1]). To have simpler notation, we will, here, write δ(ρ, a) instead
of L(δ([ν−(a−1)/2ρ, ν(a−1)/2ρ])); this is the generalized Steinberg representation of
GL(dρ a) based on ρ. The result is the following products:∏

(ρ′,a′)∈Jord(π)

L(δ(ρ, a)× δ(ρ′, a′), s) L(δ(ρ, a)× δ(ρ′, a′), s+ 1)−1,(13-1)

∏
(ρ′,a′)∈Jord(π)

L(δ(ρ, a)× δ(ρ′, a′),−s) L(δ(ρ, a)× δ(ρ′, a′),−s+ 1)−1,(13-2)

L(δ(ρ, a), Ra dρ , 2s) L(δ(ρ, a), Ra dρ , 2s+ 1)−1,(13-3)

L(δ(ρ, a), Ra dρ ,−2s) L(δ(ρ, a), Ra dρ ,−2s+ 1)−1.(13-4)

Now (J-1) of section 2 is equivalent to the fact that the two last products (13-3)
and (13-4) have no pole at s = 0. The two first products (13-1) and (13-2) are easy
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to analyze using Theorem 8.2 of [JPSS]:

L(δ(ρ, a)× δ(ρ, a′), s) =
(a+a′)/2−1∏
k=|a−a′|/2

L(ρ× ρ′, s+ k).

Denominators have no pole and numerators have pole of order one exactly when
(ρ, a) ∈ Jord(π).

This explains the following result: the induced representation

δ(ρ, a)o π

is irreducible if and only if either (ρ, a) does not satisfy (J-1) of section 2 or (ρ, a) ∈
Jord(π).

Therefore, Jordρ(π) determines completely if δ(ρ, a)o π is reducible or not (for
an arbitrary irreducible unitarizable cuspidal representation ρ).

A more elementary argument can be applied in the following way to obtain the
same result. If a satisfies condition (J-1) of section 2, then by definition Jordρ(π)
tells exactly when δ(ρ, a)o π reduces (this is a part of the definition of Jordρ(π)).
Suppose that a does not satisfy (J-1). Let a be odd. Then (BA) implies that
νxρoσ reduces for some x ∈ (1/2)+Z. Now Proposition 4.2 of [T2] (together with
Remark 12.2 in this paper and (BA)) implies that δ(ρ, a) o π is irreducible. If we
suppose that a is even, we get in a similar way that δ(ρ, a)o π is irreducible (using
Proposition 4.1 of [T2] and Remark 12.2 of this paper).

The computation of the product of standard intertwining operators can be gen-
eralized by replacing π with a representation induced from an irreducible square
integrable representation. This computation can be made since the case of the gen-
eral linear groups is already known by Shahidi’s results. Using the result of Harish-
Chandra, we can compute the intertwining algebra of a representation induced by
an irreducible square integrable representation in terms of poles of the standard
intertwining operators. From the above description of reducibility of δ(ρ, a) o π,
we obtain in that way the following

13.1. Theorem. (i) Let ρ1, . . . , ρn be a set of (equivalence classes of ) irreducible
unitarizable cuspidal representations of general linear groups GL(ki), ki ≥ 1, and
let a1, . . . , an ∈ N. Suppose that π is an irreducible square integrable representation
of some Sq. Then the induced representation

Π =

(
n∏
i=1

δ(ρi, ai)

)
o π(13-5)

is a multiplicity one representation of length 2m, where m is the cardinal number
of the following set:

{(ρi, ai); 1 ≤ i ≤ n, (ρi, ai) satisfies (J-1) and (ρi, ai) /∈ Jord(π)}

(note that we count only different (ρi, ai)’s, not the different indexes).
(ii) Suppose that we have another collection ρ′1, . . . , ρ

′
n′ , a

′
1, . . . , a

′
n′ and π′ as

above. We define the representation Π′ for this collection in the same way as we
have defined Π in (13-5) for ρ1, . . . , ρn, a1, . . . , an and π. Then the representations
Π and Π′ have an irreducible subquotient in common, if and only if they are equiv-
alent. This happens if and only if π ∼= π′, n = n′ and (ρ1, a1), . . . , (ρn, an), (ρ∗1, a1),
. . . , (ρ∗n, an) is a permutation of (ρ′1, a1), . . . , (ρ′n, an), (ρ′∗1 , a1), . . . , (ρ′∗n , an).
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The first part of the theorem can be obtained from the discussion which precedes
the theorem, also using Goldberg’s result from [G] (this requires the assumption
charF ′ = 0). The second part of the theorem follows from Proposition III.4.1 of
[W1].

The above theorem gives a reduction of irreducible tempered representations to
cuspidal representations and cuspidal reducibilities. Therefore, it implies also the
same type of reduction of the non-unitary duals (i.e. of the parameters in the
Langlands classification).

14. Exercises of the introduction and examples of admissible triples

We shall now prove the exercises which we have mentioned in the introduction.
Fix Jord, which corresponds to some ϕ : WF ×SL(2,C)→L G (as in the introduc-
tion), and fix a function

ε : Jord→ {±1}.
Using the notation of the introduction, we shall directly construct

ϕϕ,ε,cusp, εϕ,ε,cusp.

To do that, we fix ρ such that Jordρ 6= ∅, and we decompose Jordρ into a partition⋃̀
i=1

Si = Jordρ

of non-empty sets Si, where S1, . . . , S` are subsets of N, in such a way that for all
1 ≤ i < ` and for all a ∈ Si, a′ ∈ Si+1 we have a < a′ and ε(ρ, a) 6= ε(ρ, a′).

Note that the last condition implies that ε is constant on each Si for any i ∈ [1, `].
Clearly, one can perform the above decomposition, and there is only one way to
perform this.

Define I ⊆ [1, `] by: i ∈ I if and only if card (Si) is odd and i 6= 1 if Jordρ ⊆ 2N
and ε|S1 is trivial. If I = ∅, we take Jordρ,cusp = ∅. If I 6= ∅, we denote by ψ the
unique ordering preserving bijection between I and [1, card (I)]. Define

Jordρ,cusp := {(ρ, 2j − η); j ∈ [1, card (I)]},
where η = 1 (resp. 0) if Jordρ contains odd (resp. even) elements. Define

ερ,cusp : Jordρ,cusp → {±1}
with

ερ,cusp(ρ, 2j − η) = ε(ρ, aj),

where aj is any element in Sψ−1(j).
We define ϕϕ,ε,cusp uniquely by:

Jord(ϕϕ,ε,cusp) =
⋃
ρ

Jordρ,cusp.

Further, εϕ,ε,cusp comes from all the ερ,cusp in the obvious way. We now need to
prove that ϕϕ,ε,cusp, εϕ,ε,cusp is the cuspidal support of ϕ, ε. One proves this directly.

The first case is when all Si (as above) have cardinality 1. This is exactly the case
when the first condition of the introduction is satisfied (i.e. we are in the alternated
case). In the other case, we argue by induction. The observation here is that the
subsets associated to ϕ1, ε1 (the notation is the same as in the introduction) are
obtained from those associated to ϕ, ε by deleting two elements in the same subset.
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The second exercise of the introduction is also easy to conclude from our con-
struction. Fix ϕ, ε as above, and let ε′ be such that ϕ, ε′ is a Langlands parameter.
We assume that ∆ε = ∆ε′ and we have to prove that

ϕϕ,ε,cusp = ϕϕ,ε′,cusp.

The assumption ∆ε = ∆ε′ on the connection between ε and ε′ implies that, for all ρ,
the decomposition of Jordρ into intersections with segments as above is the same if
we use ε instead of ε′. This and the above construction imply ϕϕ,ε,cusp = ϕϕ,ε′,cusp.

In the sequel of this section, we shall write a few examples concerning admissible
triples. To simplify discussion, we shall assume that our triples in this section
satisfy condition (L) of the fifth section.

For a given Jord and πcusp (or Jord(πcusp)), we shall say that a partially defined
function ε is admissible if ε, together with Jord and πcusp, forms an admissible
triple.

14.1. We shall first consider the case when Jordρ(πcusp) = ∅ and L(ρ,Rdρ , s) has
a pole at s = 0 (the last condition is equivalent to the fact that we are in the
even case). Then ν1/2ρoπcusp reduces. We shall now discuss some possibilities for
Jordρ.

14.1.0. Jordρ = ∅. Here there is only one ε. We are in the alternated case. The
attached representation is πcusp.

14.1.1. Jordρ = {2k1}, k1 ∈ N. Then there are two possible partial functions ε,
which we can describe by the following table:

Jordρ ε1 ε2

2k1 1 −1.
(14-1)

First ε2 is not admissible (ε2 cannot be in the mixed case because card(Jordρ)=1,
and ε2 cannot be alternated since card(Jordρ)=1 and card(Jord′ρ(πcusp))=0). Fur-
ther,

ε1

is admissible and we are in the alternated case.

14.1.2. Jordρ = {2k1, 2k2}, k1 < k2 ∈ N. Then there exist the following functions
ε on Jordρ:

Jordρ ε1 ε2 ε3 ε4

2k1 1 1 −1 −1
2k2 1 −1 1 −1.

(14-2)

We cannot have alternated ε (since card(Jordρ) = 2 and card(Jordρ(πcusp))=0).
Obviously,

ε1, ε4

are admissible (see 14.1.0).
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14.1.3. Jordρ = {2k1, 2k2, 2k3}, k1 < k2 < k3 ∈ N. We have the following possibil-
ities for ε:

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

2k1 1 1 1 1 −1 −1 −1 −1
2k2 1 1 −1 −1 1 1 −1 −1
2k3 1 −1 1 −1 1 −1 1 −1.

(14-3)

We cannot have alternated ε (since card(Jordρ)=3 and card(Jordρ(πcusp))=0).
Thus ε3 and ε6 cannot be admissible. Further, if we have an odd number of −1’s,
then from 14.1.1 we see that ε cannot be admissible. Thus, the following remain:

ε1, ε4, ε7.

From 14.1.1 we see that they are admissible.

14.1.4. Jordρ = {2k1, 2k2, 2k3, 2k4}, k1 < k2 < k3 < k4 ∈ N. We have the following
partial functions ε:

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13 ε14 ε15 ε16

2k1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2k2 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
2k3 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
2k4 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

(14-4)

We have not alternated ε (since card(Jordρ)=4 and card(Jordρ(πcusp))=0). Thus
ε6 and ε11 cannot be admissible. Again, if we have an odd number of −1’s, then
from 14.1.2 we see that ε cannot be admissible. Thus, ε2, ε3, ε5, ε8, ε9, ε12, ε14 and
ε15 are not admissible. The following remain:

ε1, ε4, ε7, ε10, ε13, ε16.

From 14.1.2 it follows that they are admissible.

14.2. Now we shall consider the case Jordρ(πcusp) = {2}. Then ν3/2ρ o πcusp
reduces. We shall list some examples for Jordρ. In paragraphs 14.2.i below, εj will
denote the function εj from the tables in 14.1.i.

14.2.0. Jordρ = ∅. This case cannot have admissible ε (since there is no bijection
between the sets ∅ and Jordρ(πcusp) = {2}).

14.2.1. Jordρ = {2k1}, k1 ∈ N. First, ε1 is not admissible (since ε1 cannot be
in the mixed case, and further ε1 cannot be alternated since card(Jordρ)=1 and
card(Jord′ρ(πcusp))=2). For

ε2

we are in the alternated case. If k1 = 1, the attached representation is πcusp.

14.2.2. Jordρ = {2k1, 2k2}, k1 < k2 ∈ N. Here we cannot have ε of mixed type,
because of 14.2.0. Now consider alternated ε. Suppose that ε3 is admissible. Then
we would have a bijection of Jordρ onto {2}, which is impossible. For ε2, we have
a bijection of Jordρ onto {0, 2}. Thus

ε2

is admissible and we are in the alternated case.
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14.2.3. Jordρ = {2k1, 2k2, 2k3}, k1 < k2 < k3 ∈ N. We cannot have alternated
ε. Therefore, ε3 and ε6 cannot be admissible. Further, if we have an odd number
of 1’s, then from 14.2.1 we see that ε cannot be admissible. Thus, the following
remain:

ε2, ε5, ε8.

Now 14.2.1 implies that they are admissible.

14.2.4. Jordρ = {2k1, 2k2, 2k3, 2k4}, k1 < k2 < k3 < k4 ∈ N. We do not have
alternated ε here. Thus ε6 and ε11 cannot be admissible. Again, if we have an
even number of 1’s, then from 14.2.2 we see that ε cannot be admissible. Thus,
ε1, ε4, ε6, ε7, ε10, ε11, ε13 and ε16 are not admissible. Among the ε’s which remain,
14.2.2 implies that after deleting 1, 1, or −1, −1, we need to have 1, −1 left (in
this order). Therefore, all the candidates for admissible ε’s are among

ε2, ε5, ε8, ε14.

Their admissibility follows from 14.2.2.

14.3. Now suppose that L(ρ,Rdρ , s) has no pole at s = 0 (i.e. we are in the odd
case). Let Jordρ(πcusp) = ∅ (then ρ o π reduces). Now if one changes 2ki into
2ki − 1 in examples 14.1.i, one gets admissible ε’s in this case, assuming that i is
even (i.e. Jordρ has an even number of elements). If Jordρ has an odd number of
elements, then there are no admissible partial functions in this case.

14.4. If Jordρ(πcusp) = {1, 3, . . . , 2l− 1} for some l ∈ N, then νlρoσ reduces. We
shall now consider the case l = 1, i.e. Jordρ(πcusp) = {1}.

14.4.0 Jordρ = ∅. Here we cannot have admissible ε (otherwise we would have a
bijection between the sets ∅ and Jordρ(πcusp) = {2}).

14.4.1. Jordρ = {2k1 − 1}, k1 ∈ N. There is only one

ε = ∅,
and it is admissible of alternated type.

14.4.2. Jordρ = {2k1 − 1, 2k2 − 1}, k1 < k2 ∈ N. We have the following partial
functions ε which we shall describe in the following way:

Jordρ ε1 ε2

2k1 − 1
1 −1

2k2 − 1 .

Here ε1 and ε2 denote the following partial functions:

ε1(2k1 − 1)ε1(2k2 − 1)−1 = 1,

ε2(2k1 − 1)ε2(2k2 − 1)−1 = −1.

Note that we cannot have ε of mixed type (because of 14.4.0). Further, ε2 is not
alternated (since card(Jordρ)=2 and card(Jordρ(πcusp))=1). Therefore, in this
case we do not have admissible ε’s.
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14.4.3. Jordρ = {2k1−1, 2k2−1, 2k3−1}, k1 < k2 < k3 ∈ N. We have the following
partial functions ε:

Jordρ ε1 ε2 ε3 ε4

2k1 − 1
1 1 −1 −1

2k2 − 1
1 −1 1 −1

2k3 − 1 .

The interpretation of the table is analogous to the interpretation of the table in
14.4.2. First, we cannot have ε of alternated type by the usual argument. Thus,
the following remain:

ε1, ε2, ε3.

As before, 14.4.1 implies that the above ε’s are admissible.

14.4.4. Jordρ = {2k1 − 1, 2k2 − 1, 2k3 − 1, 2k4 − 1}, k1 < k2 < k3 < k4 ∈ N.
Obviously, we cannot have alternated ε here. Now 14.4.2 (or 14.4.0) implies that
we also do not have ε of mixed type here.

14.4.5. Jordρ = {2k1 − 1, 2k2 − 1, 2k3 − 1, 2k4 − 1, 2k5 − 1}, k1 < k2 < k3 < k4 <
k5 ∈ N. We have the following partial functions ε:

Jordρ ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12 ε13 ε14 ε15 ε16

2k1 − 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

2k2 − 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

2k3 − 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

2k4 − 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

2k5 − 1

First, we do have not alternated ε. Thus, ε16 is not admissible. Further, if we
remove 1, the resulting restricted partial function that we then obtain cannot be
−1, −1 by 14.4.2. Therefore, the candidates for admissible ε’s reduce to

ε1, ε2, ε3, ε5, ε6, ε7, ε9, ε11, ε12, ε14.

Their admissibility follows from 14.4.2.

14.4.6. Jordρ = {2k1 − 1, 2k2 − 1, . . . , 2k2n − 1}, k1 < k2 < · · · < k2n ∈ N. Again,
we do not have ε of alternated type here. As before, we see that we do not have ε
of mixed type here.

14.5. Remark. Here we shall give a slightly modified interpretation of the classifi-
cation of irreducible square integrable representations.

(i) Fix an irreducible cuspidal representation πcusp of Sn′ . Let ρ1, . . . , ρk be
inequivalent F ′/F -selfdual irreducible cuspidal representations of general linear
groups. Let νRρi = {νxρi;x ∈ R}. Denote by

D(ρ1, . . . , ρk;πcusp)
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the set of all equivalence classes of irreducible square integrable representations of
groups Sn, whose factors are all contained in

⋃k
i=1 ν

Rρi and whose partial cuspidal
support is πcusp. These classes are precisely all the (classes of) irreducible square
integrable subquotients of all possible τ1 × τ2 × · · · × τ` o πcusp when ` runs over
the non-negative integers and τ1, τ2, . . . , τl run over

⋃k
i=1 ν

Rρi.
Each irreducible square integrable representation of a group Sn is contained in

some D(ρ1, ρ2, . . . , ρk;πcusp) as above (for some πcusp). Therefore, for the classifi-
cation of irreducible square integrable representations (of the series of the groups
that we are considering), it is enough to classify sets D(ρ1, ρ2, . . . , ρk;πcusp), and
know what the intersection is of such different sets. The problem of describing
intersections is very easy. Let

{ρ1, ρ2, . . . , ρ`} ∩ {ρ′1, ρ′2, . . . , ρ′`′} = {ρ′′1 , ρ′′2 , . . . , ρ′′`′′}.
Then

D(ρ1, ρ2, . . . , ρ`;πcusp) ∩D(ρ′1, ρ
′
2, . . . , ρ

′
`′ ;πcusp) = D(ρ′′1 , ρ

′′
2 , . . . , ρ

′′
`′′ ;πcusp).

If πcusp is not isomorphic to π′cusp, then

D(ρ1, ρ2, . . . , ρ`;πcusp) ∩ D(ρ′1, ρ
′
2, . . . , ρ

′
`′ ;π

′
cusp) = ∅.

(ii) We shall give now a useful reduction of a problem of classifying sets
D(ρ1, . . . , ρk;πcusp).

Let π ∈ D(ρ1, . . . , ρk;πcusp). For each j, there exists an irreducible representa-
tion πj of some Snj whose factors are all contained in νRρj , and there exists an
irreducible representation τj of a general linear group whose cuspidal support con-

sists of representations from
(⋃k

i=1 ν
Rρi

)
\νRρj , such that we have an embedding

π ↪→ τj o πj .

By [Jn1], representations π1, . . . , πk are uniquely determined by π, they are all
square integrable and π 7→ (π1, . . . , πk) is a bijection from D(ρ1, . . . , ρk;πcusp) onto
the Cartesian product

∏k
i=1D(ρi;πcusp). In this way one gets a reduction of the

problem of the classification of irreducible square integrable representations to the
problem of the classification of sets

D(ρ;πcusp)

(of irreducible square integrable representations; this reduction is implicit in our
construction).

(iii) We shall now analyze parameters of representations in D(ρ;πcusp). For
π ∈ D(ρ;πcusp) we have

Jordρ′ (π) = Jordρ′ (πcusp)

for any F/F ′-selfdual irreducible cuspidal representation ρ′ of a general linear group,
which is not equivalent to ρ. Recall that πcusp is fixed. From the above observations
it follows that the parameter (Jord(π), επ , πcusp) of π is completely determined by
the pair (Jordρ(π), επ). Further, from the construction of irreducible square inte-
grable representations we see that π is determined by Jordρ(π) and the “restriction”
of επ to {(ρ, a); a ∈ Jordρ(π)}. We shall identify this “restriction” of επ with a par-
tially defined function on Jordρ(π) (since {(ρ, a); a ∈ Jordρ(π)} and Jordρ(π) are
in a natural bijection), which we shall denote by ε(ρ)π .
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Therefore the pairs Jordρ and ε(ρ), where ε(ρ) is a partially defined function
on Jordρ which, with Jordρ(π) and πcusp (in fact with Jordρ(πcusp)), makes an
admissible triple, parameterize D(ρ;πcusp). Note that Jordρ(π) and Jordρ(πcusp)
are finite subsets of N.

(iv) We shall now explicitly describe the parameters (Jordρ(π), ε(ρ)) ofD(ρ;πcusp)
from (iii) (note that this description will not involve L-functions). Suppose that
ν±αρ o πcusp reduces (α ≥ 0). Recall that (BA) implies α ∈ (1/2)Z. Now
Jordρ(πcusp) = {2α− 1− 2i; i ∈ Z+ and 2α− 1− 2i ∈ N} (see section 12).

Now Jordρ of alternated type is a subset of N consisting of the element of the
same parity as 2α − 1, of cardinality α if α ∈ Z+ and α ± 1/2 if α 6∈ Z+. In
both cases, ε(ρ) is uniquely determined with Jordρ (and the fact that we are in the
alternated case; it is easy to write down this function).

Fix alternated Jordρ (and ε(ρ)). Take any two numbers a− < a ∈ N of the
same parity as 2α − 1, such that [a−, a] ∩ Jordρ = ∅. Set Jord(1)

ρ = Jordρ ∪
{a−, a}. Denote by ε

(ρ)
1 any extension (as a partially defined function) of ε(ρ) to

Jord
(1)
ρ such that ε(ρ)(a−) = e(ρ)(a) (there are precisely two such extensions; it is

easy to write them down). Repeating the above construction again, we will get
some Jord

(2)
ρ , ε(ρ)2 . We can continue this construction further. By this simple

construction, each admissible Jordρ, ε(ρ) can be obtained in finitely many steps
(starting from appropriate alternated Jord+

ρ ).
From the above description, one can see that it is very easy to describe the pa-

rameters of D(ρ;πcusp) from the reducibility point α (they are expressed in terms
of finite subsets of N). The corresponding irreducible square integrable represen-
tations are also described with a parallel inductive construction (corresponding
to the construction of (Jord(1)

ρ , ε
(ρ)
1 ), (Jord(2)

ρ , ε
(ρ)
2 ), . . . , which started from some

alternated (Jordρ, ε(ρ))).

15. Unitary groups

In this section we shall explain necessary modifications which one needs for the
classifications obtained for symplectic and odd-orthogonal groups in former sections
to also hold for unitary groups.

Fix a series Sn of unitary groups (see the first section). Note that Sn are con-
nected reductive groups over F . Further, formula (1-1) holds (and therefore (1-2)
also holds). This follows in a similar way as in the case of non-split odd-orthogonal
groups (the reduced root system is either of type B or C; in both cases the Weyl
group is the same as in the symplectic and odd-orthogonal cases).

Casselman’s square integrability criterion has the same form as in the case of
symplectic and odd-orthogonal groups. This follows from the description of the
positive simple roots (analogously as in section 6 of [T6] for symplectic groups).

In the definition of an admissible triple, we need only specify which L-function
we need to take in the definition of the parity of a for (ρ, a) ∈ Jord . The L-function
is determined by the representation. We shall recall the representation introduced
in [M2] which enters the definition of the parity.

Let Sn be the unitary group of the unitary space Vn from the Witt tower and
denote n∗ = dimF ′(Vn) (note that n∗ = 2n if dimF ′(Vn) is even, and n∗ = 2n+ 1
otherwise; recall that Sn is the unitary group U(n∗, F ′/F )).
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Take an irreducible F ′/F -selfdual cuspidal representation ρ of a general linear
group GL(dρ, F ′). The L-group of the F -group GL(dρ, F ′) is isomorphic to a semi-
direct product (

GL(dρ,C)×GL(dρ,C)
)
iGal(F ′/F ),

where (the non-trivial element of)Gal(F ′/F ) acts on the normal subgroupGL(dρ,C)
×GL(dρ,C) by

θ(g1, g2, 1)θ−1 = (tg−1
2 ,t g−1

1 , 1)

(here tg denotes the transposed matrix of g).
For η ∈ {±1}, denote by R

(η)
dρ

the representation of the above L-group of
GL(dρ, F ′) on EndC(Cdρ) given by:

(g1, g2, 1)u = g1 u
tg2 and (1, 1, θ)u = η tu.

Suppose now that Sn is a series of groups such that the dimensions dimF ′(Vn)
are even. Then we shall denote by

Rdρ

the representation R(1)
dρ

. Otherwise, in the odd case, Rdρ will denote R(−1)
dρ

.
With Rdρ defined in this way for unitary groups, we have the same definition of

the parity as in the second section.
The degree ∑

(ρ,a)∈Jord(π)

a dρ

needs to be n∗, for an irreducible square integrable representation π of Sn.
These are required modifications in the unitary case.

16. Even-orthogonal groups

Fix a series Sn of even-orthogonal groups (see the first section). First we need to
describe L-functions which enter the definition of Jordan blocks. For an irreducible
cuspidal selfdual representation ρ ofGL(dρ, F ), we denote by Rdρ the representation
of GL(dρ,C) on ∧2Cdρ .

The degree
∑

(ρ,a)∈Jord(π) a dρ needs to be 2n here, for an irreducible square
integrable representation π of Sn.

Denote the subgroup of elements in Sn of determinant one by S′n (S′n has index
two in Sn).

Now we shall comment on the case of non-split even-orthogonal groups Sn. Then
the Weyl group of S′n is the same as in the case of symplectic and odd-orthogonal
groups (the root system is of type B). Therefore, we can apply the calculations
done in section 4 of [T5] to the groups S′n. Further, one can easily see that the
analogue of Lemma 5.1 holds here (recall that the unipotent radicals in Sn are
already contained in S′n). From this one gets that formula (1-1) holds also for
groups Sn.

Further, since we have the same root system as in the case of odd-orthogonal
groups, Casselman’s square integrability criterion holds for groups S′n (and Sn) in
the same form as in the case of symplectic and odd-orthogonal groups.
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These are the only comments that we need in the case of non-split even-orthog-
onal groups.

Suppose now that Sn consists of split even-orthogonal groups. Now formula (1-1)
holds by [B] (the strategy of proving (1-1) requires modification in this case, since
the root systems of the groups S′n are of type D, and the Weyl group is slightly
different from the previous cases; there are also other ways to prove (1-1), different
from the proof in [B]).

A possible difference with the case of the groups that we have studied before
appear if πcusp is a representation of S0 = {1}. In this case we have two standard
“Siegel parabolic subgroups” in Sn. They are also parabolic subgroups in Sn, but
they are conjugated in Sn. Therefore, we can proceed in this situation in the same
way as in the cases of groups that we have considered before.

For n 6= 1, a (finite length) representation πcusp of Sn is cuspidal if πcusp|S′n is a
cuspidal representation of S′n. The group S1 does not have cuspidal representations.

Further, if n 6= 1, then a representation π of Sn is square integrable if and only
if π|S′n is a square integrable representation of S′n. One directly sees that S1 does
not have square integrable representations (nor has essentially square integrable
representations).

A comment regarding Casselman’s square integrability criterion is necessary,
since the root systems of S′n are different from the previous ones. First we shall say
a few words about parabolic subgroups.

Denote by s ∈ Sn a quasi-diagonal matrix

q-diag
(

1, . . . , 1︸ ︷︷ ︸
n− 1 times

,

[
0 1
1 0

]
, 1, . . . , 1︸ ︷︷ ︸
n− 1times

)
.

Recall that standard parabolic subgroups in SO(2n, F ) are parameterized by par-
titions β = n1 + · · ·+ nk of 0 ≤ m ≤ n, m 6= n− 1, into a sum of positive integers.
Besides these standard parabolic subgroups, the remaining ones are parabolic sub-
groups sPβs, when n = m and nk ≥ 2 (see [B]).

Let (π, V ) be an irreducible representation of Sn, whose partial support is πcusp.
Denote V (N) = spanC{π(n)v − v;n ∈ N, v ∈ V } and let VN = V/V (N) be the
normalized Jacquet module.

To check square integrability of π, we need to check Casselman’s square inte-
grability criterion for parabolic subgroups of type Pγ or sPγs, for which Jacquet
modules are cuspidal.

Now the Levi factor of a parabolic subgroup Mγ of Pγ is naturally isomorphic to
GL(n1, F )×· · ·×GL(nk, F )×SO(n−m,F ). In the case of sPγs, it is also naturally
isomorphic to GL(n1, F )× · · · ×GL(nk, F )× SO(n−m,F ), by the conjugation of
this subgroup with s (in the first case, we shall say that we are in the non-conjugate
situation, while in the other case we shall say that we are in the conjugate situation).
Let ρ = ρ1 ⊗ · · · ⊗ ρk ⊗ σ be an irreducible cuspidal subquotient of the Jacquet
module, or its conjugate, if we are in the conjugated situation. Define

e∗(ρ) =
(
e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸

n1 times

, . . . , e(ρk), . . . , e(ρk)︸ ︷︷ ︸
nk times

, e(σ), . . . , e(σ)︸ ︷︷ ︸
n−m times

)
,

where we take e(σ) = 0 if n−m ≥ 2.
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First consider the case n−m ≥ 2. Casselman’s criterion for square integrability
tells us in this case that the square integrability is equivalent to

j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k.(16-1)

These are our usual relations for square integrability.
Let n = m. Suppose nk = 1. Then the last two simple roots of the root system

Dn are not in the roots that define the parabolic subgroup. The square integrability
criterion now is equivalent to the following relations:

j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k − 2,(16-2)

(
k−1∑
i=1

e(ρi)ni

)
− e(ρk)nk > 0,(16-3)

k∑
i=1

e(ρi)ni > 0.(16-4)

Summing (16-3) and (16-4) we get
k−1∑
i=1

e(ρi)ni > 0.(16-5)

Thus
j∑
i=1

e(ρi)ni > 0, j = 1, . . . , k.(16-6)

Note that (16-6) represents our usual relations for square integrability. We need to
see that they are enough for square integrability, i.e. that they also imply (16-3)
(recall that π is a representation of O(2n, F )).

Suppose that (16-6) holds for each irreducible cuspidal subquotient ρ of the
Jacquet module. We shall now see that (16-3) holds. We know that there is an
epimorphism V → VNγ → ρ = ρ1⊗· · ·⊗ρk⊗1 of Pγ-representations (the unipotent
radical is assumed to act trivially in the last representation). Now conjugating this
epimorphism by s, we get that there is a Pγ epimorphism onto ρ1⊗· · ·⊗ρk−1⊗ρ̃k⊗1.
Now (16-4) applied to the last subquotient of the Jacquet module implies that (16-3)
holds.

It remains to consider the case n = m and nk ≥ 2. Then σ = πcusp is the trivial
representation (of O(0, F )). Now the square integrability criterion gives relations
(16-6). Note that these relations need to hold in the non-conjugate situations, as
well as in conjugate ones.

Suppose that relations (16-6) hold for non-conjugate situations only. Let ρ be a
subquotient of the Jacquet module for sPγs (note Nγ = sNγs). Then we have an
epimorphism V → VNγ → sρs = s(ρ1 ⊗ · · · ⊗ ρk ⊗ 1)s ∼= ρ = ρ1 ⊗ · · · ⊗ s(ρk ⊗ 1)s
of sPγs-representations (the unipotent radical is assumed to act trivially in the
last representation, as in the previous case). Conjugating this epimorphism by s,
we obtain an epimorphism from V onto ρ1 ⊗ · · · ⊗ ρk ⊗ 1 of Pγ-representations.
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Now relations (16-6) applied to the last subquotient of the Jacquet module (in the
non-conjugate situation) imply that (16-6) also hold in the conjugated situation.

At several places, we have used Harish-Chandra’s results on the Plancherel mea-
sure, especially in 2.2; this was written in [W1] only for connected groups, but we
have extended what we need for even-orthogonal groups in the appendix of [M2].
The proof of 2.2 is already in [M2].
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de mathématiques de Jussieu (2001).

[MViW] Mœglin, C.; Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur
un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag, Berlin, 1987. MR
91f:11040

[MW] Mœglin, C. and Waldspurger J.-L., Le spectre discret de GL(n), Ann. Sci. École Norm.
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[Mu] Muić, G., On generic irreducible representations of Sp(n, F ) and SO(2n+1, F ), Glasnik
Mat. 33(53) (1998), 19-31. MR 2000j:22020

[Sh1] Shahidi, F., A proof of Langlands conjecture on Plancherel measures: complementary
series for p-adic groups, Ann. of Math. 132 (1990), 273-330. MR 91m:11095

[Sh2] , On certain L-functions, Amer. J. Math. 103 (1981), 297-356. MR 82i:10030
[Sh3] , Local coefficients and intertwining operators for GL(n), Compositio Math. 48

(1983), 271-295. MR 85a:22027

[Sh4] , Twisted endoscopy and reducibility of induced representations for p-adic groups,
Duke Math. J. 66 (1992), 1-41. MR 93b:22034

[Sh5] , Fourier transforms of intertwining operators and Plancherel measures for
GL(n), Amer. J. Math. 106 (1984), 67-111. MR 86b:22031

http://www.ams.org/mathscinet-getitem?mr=91e:22020
http://www.ams.org/mathscinet-getitem?mr=92a:11059
http://www.ams.org/mathscinet-getitem?mr=2001m:22033
http://www.ams.org/mathscinet-getitem?mr=58:28310
http://www.ams.org/mathscinet-getitem?mr=95g:22016
http://www.ams.org/mathscinet-getitem?mr=85g:11044
http://www.ams.org/mathscinet-getitem?mr=99b:22028
http://www.ams.org/mathscinet-getitem?mr=2001j:22024
http://www.ams.org/mathscinet-getitem?mr=88d:11121
http://www.ams.org/mathscinet-getitem?mr=95f:11036
http://www.ams.org/mathscinet-getitem?mr=2002b:22032
http://www.ams.org/mathscinet-getitem?mr=97h:22013
http://www.ams.org/mathscinet-getitem?mr=98m:11044a
http://www.ams.org/mathscinet-getitem?mr=91f:11040
http://www.ams.org/mathscinet-getitem?mr=91b:22028
http://www.ams.org/mathscinet-getitem?mr=2000j:22020
http://www.ams.org/mathscinet-getitem?mr=91m:11095
http://www.ams.org/mathscinet-getitem?mr=82i:10030
http://www.ams.org/mathscinet-getitem?mr=85a:22027
http://www.ams.org/mathscinet-getitem?mr=93b:22034
http://www.ams.org/mathscinet-getitem?mr=86b:22031


786 COLETTE MŒGLIN AND MARKO TADIĆ
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