Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Blow up in finite time and dynamics of blow up solutions for the $L^2$-critical generalized KdV equation


Authors: Yvan Martel and Frank Merle
Journal: J. Amer. Math. Soc. 15 (2002), 617-664
MSC (1991): Primary 35Q53; Secondary 35B05, 35Q51
DOI: https://doi.org/10.1090/S0894-0347-02-00392-2
Published electronically: March 8, 2002
MathSciNet review: 1896235
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we describe the dynamics of blow up solutions for the critical generalized KdV equation such that the initial data is close to the soliton in $L^2$ and has decay in $L^2$ at the right. In particular, we prove that blow up occurs in finite time, and we obtain an upper bound on the blow up rate.


References [Enhancements On Off] (What's this?)

  • 1. J.L. Bona, V.A. Dougalis, O.A. Karakashian and W.R. McKinney, Conservative, high order numerical schemes, Phil. Trans. Roy. Soc. London Ser. A. 351 (1995), 107-164. MR 96d:65141
  • 2. J. Bourgain, Harmonic analysis and nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, 1,2 (Zurich, 1994), 31-44, Birkhäuser, Basel, 1995. MR 97f:35088
  • 3. J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation, SIAM J. Math. Anal. 20, 6 (1989), 1388-1425. MR 90i:35240
  • 4. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematical Supplementary Studies, Studies in Applied Math. 8 (1983), 93-128. MR 86f:35160
  • 5. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620. MR 94h:35229
  • 6. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. MR 38:3620
  • 7. Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation, Geom. Funct. Anal. 11 (2001), 74-123.
  • 8. Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. 79 (2000), 339-425. MR 2001i:37102
  • 9. Y. Martel and F. Merle, Stability of the blow up profile and lower bounds on the blow up rate for the critical generalized KdV equation, to appear in Ann. of Math.
  • 10. F. Merle, Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, Proceeding of the International Congress of Mathematicians (Berlin, 1998), Doc. Math. J. DMV. MR 99h:35200
  • 11. F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Amer. Math. Soc. 14 (2001), 555-578.
  • 12. R.M. Miura, The Korteweg-de Vries equation: a survey of results, SIAM Review 18 (1976), 412-459. MR 53:8689
  • 13. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567-576. MR 84d:35140

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 35Q53, 35B05, 35Q51

Retrieve articles in all journals with MSC (1991): 35Q53, 35B05, 35Q51


Additional Information

Yvan Martel
Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France
Email: Yvan.Martel@math.u-cergy.fr

Frank Merle
Affiliation: Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France – and – Institut Universitaire de France
Email: Frank.Merle@math.u-cergy.fr

DOI: https://doi.org/10.1090/S0894-0347-02-00392-2
Keywords: Critical KdV equation, finite time blow up, blow up rate
Received by editor(s): March 15, 2001
Published electronically: March 8, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society