Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Torification and factorization of birational maps


Authors: Dan Abramovich, Kalle Karu, Kenji Matsuki and Jaroslaw Wlodarczyk
Journal: J. Amer. Math. Soc. 15 (2002), 531-572
MSC (2000): Primary 14E05
DOI: https://doi.org/10.1090/S0894-0347-02-00396-X
Published electronically: April 5, 2002
MathSciNet review: 1896232
Full-text PDF
View in AMS MathViewer New

Abstract | References | Similar Articles | Additional Information

Abstract: Building on work of the fourth author and Morelli's work, we prove the weak factorization conjecture for birational maps in characteristic zero: a birational map between complete nonsingular varieties over an algebraically closed field $K$ of characteristic zero is a composite of blowings up and blowings down with nonsingular centers.


References [Enhancements On Off] (What's this?)

  • 1. S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321-348. MR 18:556b
  • 2. D. Abramovich and A. J. de Jong, Smoothness, semistability, and toroidal geometry, J. Alg. Geom. 6 (1997), 789-801. MR 99b:14016
  • 3. D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241-273. MR 2001f:14021
  • 4. D. Abramovich, K. Matsuki and S. Rashid, A note on the factorization theorem of toric birational maps after Morelli and its toroidal extension, Tohoku Math. J. (2) 51 (1999), no. 4, 489-537. MR 2000i:14073; Correction: Tohoku Math. J. 52 (2000), 629-631. MR 2001j:14069
  • 5. D. Abramovich and J. Wang, Equivariant resolution of singularities in characteristic 0, Math. Res. Letters 4 (1997), 427-433. MR 98c:14011
  • 6. S. Akbulut and H. King, Topology of algebraic sets, MSRI publications 25. MR 94m:57001
  • 7. V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 1-32, World Sci. Publishing, Rivers Edge, NJ, 1998. MR 2001a:14039
  • 8. V. V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. 1 (1999), no. 1, 5-33. MR 2001j:14018
  • 9. E. Bierstone and D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302. MR 98e:14010
  • 10. F. Bittner, The universal Euler characteristic for varieties of characteristic zero, preprint math.AG/0111062.
  • 11. L. A. Borisov and A. Libgober, Elliptic Genera of singular varieties, preprint math.AG/0007108.
  • 12. M. Brion and C. Procesi, Action d'un tore dans une variété projective, in Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 509-539, Progr. Math., 92, Birkhäuser, Boston, MA, 1990. MR 92m:14061
  • 13. C. Christensen, Strong domination/weak factorization of three dimensional regular local rings, Journal of the Indian Math. Soc. 45 (1981), 21-47. MR 88a:14010b
  • 14. A. Corti, Factoring birational maps of 3-folds after Sarkisov, J. Alg. Geom. 4 (1995), 23-254. MR 96c:14013
  • 15. B. Crauder, Birational morphisms of smooth algebraic threefolds collapsing three surfaces to a point, Duke Math. J. 48 (1981), 589-632. MR 83a:14012
  • 16. S. D. Cutkosky, Local factorization of birational maps, Advances in Math. 132 (1997), 167-315. MR 99c:14018
  • 17. S. D. Cutkosky, Local monomialization and factorization of morphisms, Astérisque 260, Soc. Math. France, 1999. MR 2001c:14027
  • 18. S. D. Cutkosky, Monomialization of morphisms from 3-folds to surfaces, preprint math.AG/0010002
  • 19. S. D. Cutkosky and O. Piltant, Monomial resolutions of morphisms of algebraic surfaces, Special issue in honor of Robin Hartshorne. Comm. Algebra 28 (2000), no. 12, 5935-5959. MR 2002a:14012
  • 20. V. I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), no. 2, 97-154. MR 80g:14001
  • 21. V. I. Danilov, Birational geometry of toric 3-folds, Math. USSR-Izv. 21 (1983), 269-280. MR 84e:14008
  • 22. J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135 (1999), no. 1, 201-232. MR 99k:14002
  • 23. I. V. Dolgachev and Y. Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. No. 87 (1998), 5-56. MR 2000b:14060
  • 24. G. Ewald, Blow-ups of smooth toric 3-varieties, Abh. Math. Sem. Univ. Hamburg 57 (1987), 193-201. MR 89b:14065
  • 25. J. Franke, Riemann-Roch in functorial form, preprint 1992, 78 pp.
  • 26. W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, 1993. MR 94g:14028
  • 27. H. Gillet and Ch. Soulé, Direct images in non-archimedean Arakelov theory, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 363-399. MR 2001j:14036
  • 28. H. Hironaka, On the theory of birational blowing-up, Harvard University Ph.D. Thesis 1960.
  • 29. H. Hironaka, An example of a non-Kälerian complex-analytic deformation of Kählerian complex structure, Annals of Math. (2) 75 (1962), 190-208. MR 25:2618
  • 30. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math. 79 (1964), 109-326. MR 33:7333
  • 31. H. Hironaka, Flattening theorem in complex analytic geometry, Amer. J. of Math. 97 (1975), no. 2, 503-547. MR 52:14365
  • 32. Y. Hu, The geometry and topology of quotient varieties of torus actions, Duke Math. J. 68 (1992), no. 1, 151-184; Erratum: Duke Math. J. 68 (1992), no. 3, 609. MR 93k:14019a
  • 33. Y. Hu, Relative geometric invariant theory and universal moduli spaces, Internat. J. Math. 7 (1996), no. 2, 151-181. MR 98i:14016
  • 34. Y. Hu and S. Keel, A GIT proof of W\lodarczyk's weighted factorization theorem, preprint math.AG/9904146.
  • 35. S. Iitaka, Algebraic Geometry (An Introduction to Birational geometry of Algebraic Varieties), Graduate Texts in Math. 76, 1982. MR 84j:14001
  • 36. A. J. de Jong, Smoothness, semistability, and alterations, Publ. Math. I.H.E.S. 83 (1996), 51-93. MR 98e:14011
  • 37. K. Karu, Boston University dissertation, 1999. http://math.bu.edu/people/kllkr/th.ps
  • 38. K. Kato, Toric singularities, Amer. J. Math. 116 (1994), 1073-1099. MR 95g:14056
  • 39. Y. Kawamata, On the finiteness of generators of a pluricanonical ring for a $3$-fold of general type, Amer. J. Math. 106 (1984), no. 6, 1503-1512. MR 86j:14032
  • 40. Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), no. 3, 603-633. MR 86c:14013b
  • 41. Y. Kawamata, Crepant blowing-ups of three dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. 127 (1988), 93-163. MR 89d:14023
  • 42. G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings I, 339, Lecture Notes in Mathematics, Springer, 1973. MR 49:299
  • 43. H. King, Resolving Singularities of Maps, Real algebraic geometry and topology (East Lansing, Michigan 1993), Contemp. Math., Amer. Math. Soc., 1995. MR 96e:14016
  • 44. J. Kollár, The cone theorem. Note to a paper: ``The cone of curves of algebraic varieties'' ([40]) by Y. Kawamata, Ann. of Math. (2) 120 (1984), no. 1, 1-5. MR 86c:14013c
  • 45. M. Kontsevich, Lecture at Orsay (December 7, 1995).
  • 46. V. S. Kulikov, Decomposition of a birational map of three-dimensional varieties outside codimension 2, Math. USSR Izvestiya 21 (1983), 187-200. MR 84j:14022
  • 47. G. Lachaud and M. Perret, Un invariant birationnel des variétés de dimension 3 sur un corps fini J. Algebraic Geom. 9 (2000), no. 3, 451-458. MR 2001g:14036
  • 48. M. N. Levine and F. Morel, Cobordisme Algébrique II, C. R. Acad. Sci. Paris 332 (2001), no. 9, 815-820.
  • 49. M. N. Levine and F. Morel, Algebraic cobordism, preprint.
  • 50. E. Looijenga, Motivic measures, preprint math.AG/0006220
  • 51. D. Luna, Slices étales. Sur les groupes algébriques, pp. 81-105. Bull. Soc. Math. France, Paris, Memoire 33. Soc. Math. France, Paris, 1973. MR 49:7269
  • 52. K. Matsuki, Introduction to the Mori program, Universitext, Springer Verlag, Berlin, 2001.
  • 53. K. Matsuki, Lectures on factorization of birational maps, RIMS preprint, 1999.
  • 54. J. Milnor, Morse Theory, Annals of Math. Stud. 51, Princeton Univ. Press, 1963. MR 29:634
  • 55. B. Moishezon, On $n$-dimensional compact varieties with $n$ algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967), 51-177. MR 35:7355a,b,c
  • 56. R. Morelli, The birational geometry of toric varieties, J. Alg. Geom. 5 (1996), 751-782. MR 99b:14056
  • 57. R. Morelli, Correction to ``The birational geometry of toric varieties", 1997 http://www.math.utah.edu/~morelli/Math/math.html
  • 58. S. Mori, Threefolds whose canonical bundles are not numerically effective, Annals of Math. 116 (1982), 133-176. MR 84e:14032
  • 59. S. Mori, Flip theorem and the existence of minimal models for 3-folds, Journal of AMS 1 (1988), 117-253. MR 89a:14048
  • 60. D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory (Third Enlarged Edition), Ergebnisse der Mathematik und ihrer Grenzgebiete, 34, Springer-Verlag, 1992. MR 95m:14012
  • 61. T. Oda, Torus embeddings and applications, Based on joint work with Katsuya Miyake. Tata Inst. Fund. Res., Bombay, 1978. MR 81e:14001
  • 62. T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag, 15, 1988. MR 88m:14038
  • 63. R. Pandharipande, A compactification over $\overline {M}_g$ of the universal moduli space of slope-semistable vector bundles, J. Amer. Math. Soc. 9 (1996), no. 2, 425-471. MR 96f:14014
  • 64. H. Pinkham, Factorization of birational maps in dimension 3, Proceedings of Symposia in Pure Math. 40, 1983. MR 85g:14015
  • 65. M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de ``platification'' d'un module, Invent. Math. 13 (1971), 1-89. MR 46:7219
  • 66. M. Reid, Canonical threeefolds, Géométrie Algémétrie Algébrique Angers 1979, A. Beauville, ed., Sijthoff and Nordhoff, 1980, p. 273-310. MR 82i:14025
  • 67. M. Reid, Minimal models of canonical 3-folds, Adv. Stud. in Pure Math. 1 (1983), 131-180. MR 86a:14010
  • 68. M. Reid, Decomposition of Toric Morphisms, Arithmetic and Geometry, papers dedicated to I. R. Shafarevich on the occasion of his 60th birthday, vol. II, Progress in Math. (M. Artin and J. Tate, eds.), 36, 1983, pp. 395-418. MR 85e:14071
  • 69. M. Reid, Birational geometry of 3-folds according to Sarkisov, preprint 1991.
  • 70. J. Sally, Regular overrings of regular local rings, Trans. Amer. Math. Soc. 171 (1972), 291-300. MR 46:9033; Erratum: Trans. Amer. Math. Soc. 213 (1975), 429. MR 52:3143
  • 71. V. G. Sarkisov, Birational maps of standard ${\mathbb{Q} }$-Fano fiberings, I. V. Kurchatov Institute Atomic Energy preprint, 1989.
  • 72. M. Schaps, Birational morphisms of smooth threefolds collapsing three surfaces to a curve, Duke Math. J. 48 (1981), 401-420. MR 83h:14012
  • 73. D. L. Shannon, Monoidal transforms of regular local rings, Amer. J. Math. 45 (1973), 284-320. MR 48:8492
  • 74. V. V. Shokurov, A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 635-651. MR 87j:14016
  • 75. H. Sumihiro, Equivariant Completion I, II, J. Math. Kyoto Univ. 14, 15 (1974), (1975), 1-28, 573-605. MR 49:2732; MR 52:8137
  • 76. M. Teicher, Factorization of a birational morphism between $4$-folds. Math. Ann. 256 (1981), no. 3, 391-399. MR 82k:14014
  • 77. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317-353. MR 95e:14006
  • 78. M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691-723. MR 96m:14017
  • 79. O. Villamayor, Constructiveness of Hironaka's resolution. Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 1-32. MR 90b:14014
  • 80. J. W\lodarczyk, Decomposition of Birational Toric Maps in Blow-Ups and Blow-Downs. A Proof of the Weak Oda Conjecture, Transactions of the AMS 349 (1997), 373-411. MR 97d:14021
  • 81. J. W\lodarczyk, Birational cobordism and factorization of birational maps, J. Alg. Geom. 9 (2000), no. 3, 425-449. MR 2002d:14019
  • 82. J. W\lodarczyk, Toroidal Varieties and the Weak Factorization Theorem, preprint math.AG/9904076.
  • 83. O. Zariski, Algebraic Surfaces, Springer-Verlag, 1934. MR 57:9695

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14E05

Retrieve articles in all journals with MSC (2000): 14E05


Additional Information

Dan Abramovich
Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
Email: abrmovic@math.bu.edu

Kalle Karu
Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02139
Email: kkaru@math.harvard.edu

Kenji Matsuki
Affiliation: Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West Lafayette, Indiana 47907-1395
Email: kmatsuki@math.purdue.edu

Jaroslaw Wlodarczyk
Affiliation: Instytut Matematyki UW, Banacha 2, 02-097 Warszawa, Poland
Email: jwlodar@mimuw.edu.pl

DOI: https://doi.org/10.1090/S0894-0347-02-00396-X
Received by editor(s): March 14, 2000
Received by editor(s) in revised form: June 1, 2000
Published electronically: April 5, 2002
Additional Notes: The first author was partially supported by NSF grant DMS-9700520 and by an Alfred P. Sloan research fellowship. In addition, he would like to thank the Institut des Hautes Études Scientifiques, Centre Emile Borel (UMS 839, CNRS/UPMC), and Max Planck Institut für Mathematik for a fruitful visiting period.
The second author was partially supported by NSF grant DMS-9700520
The third author has received no financial support from NSF or NSA during the course of this work.
The fourth author was supported in part by Polish KBN grant 2 P03 A 005 16 and NSF grant DMS-0100598.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society