Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable
Authors:
Andrei S. Rapinchuk, Yoav Segev and Gary M. Seitz
Journal:
J. Amer. Math. Soc. 15 (2002), 929978
MSC (1991):
Primary 16K20, 16U60; Secondary 20G15, 05C25
Published electronically:
June 21, 2002
MathSciNet review:
1915823
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. Let be a finite dimensional division algebra having center , and let be a normal subgroup of finite index. Suppose is not solvable. Then we may assume that is a minimal nonsolvable group (MNS group for short), i.e. a nonsolvable group all of whose proper quotients are solvable. Our proof now has two main ingredients. One ingredient is to show that the commuting graph of a finite MNS group satisfies a certain property which we denote Property . This property includes the requirement that the diameter of the commuting graph should be , but is, in fact, stronger. Another ingredient is to show that if the commuting graph of has Property , then is open with respect to a nontrivial height one valuation of (assuming without loss of generality, as we may, that is finitely generated). After establishing the openness of (when is an MNS group) we apply the Nonexistence Theorem whose proof uses induction on the transcendence degree of over its prime subfield to eliminate as a possible quotient of , thereby obtaining a contradiction and proving our main result.
 [1]
S.
A. Amitsur, Finite subgroups of division
rings, Trans. Amer. Math. Soc. 80 (1955), 361–386. MR 0074393
(17,577c), http://dx.doi.org/10.1090/S00029947195500743939
 [2]
Michael
Aschbacher and Gary
M. Seitz, Involutions in Chevalley groups over fields of even
order, Nagoya Math. J. 63 (1976), 1–91. MR 0422401
(54 #10391)
 [3]
J.
H. Conway, R.
T. Curtis, S.
P. Norton, R.
A. Parker, and R.
A. Wilson, Atlas of finite groups, Oxford University Press,
Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups;
With computational assistance from J. G. Thackray. MR 827219
(88g:20025)
 [4]
Helmut
Behr, Arithmetic groups over function fields. I. A complete
characterization of finitely generated and finitely presented arithmetic
subgroups of reductive algebraic groups, J. Reine Angew. Math.
495 (1998), 79–118. MR 1603845
(99g:20088), http://dx.doi.org/10.1515/crll.1998.023
 [5]
Nicolas
Bourbaki, Éléments de mathématique,
Masson, Paris, 1985 (French). Algèbre commutative. Chapitres 5
à 7. [Commutative algebra. Chapters 5–7]; Reprint. MR 782297
(86k:13001b)
 [6]
Vitaly
Bergelson and Daniel
B. Shapiro, Multiplicative subgroups of finite
index in a ring, Proc. Amer. Math. Soc.
116 (1992), no. 4,
885–896. MR 1095220
(93b:16001), http://dx.doi.org/10.1090/S00029939199210952205
 [7]
R.
W. Carter, Conjugacy classes in the Weyl group, Compositio
Math. 25 (1972), 1–59. MR 0318337
(47 #6884)
 [8]
Roger
W. Carter, Finite groups of Lie type, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1985.
Conjugacy classes and complex characters; A WileyInterscience Publication.
MR 794307
(87d:20060)
 [9]
Daniel
Gorenstein and Richard
Lyons, The local structure of finite groups of characteristic 2
type, Mem. Amer. Math. Soc. 42 (1983), no. 276,
vii+731. MR
690900 (84g:20025), http://dx.doi.org/10.1090/memo/0276
 [10]
Serge
Lang, Algebra, AddisonWesley Publishing Co., Inc., Reading,
Mass., 1965. MR
0197234 (33 #5416)
 [11]
R. Lawther, M.W. Liebeck, G.M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, to appear, Pacific J. Math.
 [12]
Martin
W. Liebeck and Gary
M. Seitz, Reductive subgroups of exceptional algebraic groups,
Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942
(96i:20059), http://dx.doi.org/10.1090/memo/0580
 [13]
G.
A. Margulis, Finiteness of quotient groups of discrete
subgroups, Funktsional. Anal. i Prilozhen. 13 (1979),
no. 3, 28–39 (Russian). MR 545365
(80k:22006)
 [14]
Richard
S. Pierce, Associative algebras, Graduate Texts in
Mathematics, vol. 88, SpringerVerlag, New YorkBerlin, 1982. Studies
in the History of Modern Science, 9. MR 674652
(84c:16001)
 [15]
Vladimir
Platonov and Andrei
Rapinchuk, Algebraic groups and number theory, Pure and
Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994.
Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
(95b:11039)
 [16]
V.
P. Platonov and A.
S. Rapinchuk, Multiplicative structure of division algebras over
number fields and the Hasse norm principle, Trudy Mat. Inst. Steklov.
165 (1984), 171–187 (Russian). Algebraic geometry
and its applications. MR 752940
(85j:11162)
 [17]
Gopal
Prasad, Strong approximation for semisimple groups over function
fields, Ann. of Math. (2) 105 (1977), no. 3,
553–572. MR 0444571
(56 #2921)
 [18]
M.
S. Raghunathan, On the group of norm 1 elements in a division
algebra, Math. Ann. 279 (1988), no. 3,
457–484. MR
922429 (89g:11111), http://dx.doi.org/10.1007/BF01456282
 [19]
Andrei
Rapinchuk and Alexander
Potapchik, Normal subgroups of 𝑆𝐿_{1,𝐷} and
the classification of finite simple groups, Proc. Indian Acad. Sci.
Math. Sci. 106 (1996), no. 4, 329–368. MR 1425612
(98i:20049), http://dx.doi.org/10.1007/BF02837693
 [20]
Andrei
S. Rapinchuk and Yoav
Segev, Valuationlike maps and the congruence subgroup
property, Invent. Math. 144 (2001), no. 3,
571–607. MR 1833894
(2002e:16027), http://dx.doi.org/10.1007/s002220100136
 [21]
L.
H. Rowen and Y.
Segev, The finite quotients of the multiplicative group of a
division algebra of degree 3 are solvable, Israel J. Math.
111 (1999), 373–380. MR 1710746
(2000g:16029), http://dx.doi.org/10.1007/BF02810692
 [22]
Louis
H. Rowen and Yoav
Segev, The multiplicative group of a division algebra of degree 5
and Wedderburn’s factorization theorem, Algebra and its
applications (Athens, OH, 1999) Contemp. Math., vol. 259, Amer.
Math. Soc., Providence, RI, 2000, pp. 475–486. MR 1780542
(2001g:16037), http://dx.doi.org/10.1090/conm/259/04116
 [23]
Yoav
Segev, On finite homomorphic images of the multiplicative group of
a division algebra, Ann. of Math. (2) 149 (1999),
no. 1, 219–251. MR 1680555
(2000e:16022), http://dx.doi.org/10.2307/121024
 [24]
Yoav
Segev, Some applications of Wedderburn’s factorisation
theorem, Bull. Austral. Math. Soc. 59 (1999),
no. 1, 105–110. MR 1672807
(99k:16068), http://dx.doi.org/10.1017/S0004972700032640
 [25]
, The commuting graph of minimal nonsolvable groups, Geom. Ded. 88(2001), 5566.
 [26]
Y. Segev, G.M. Seitz, Anisotropic groups of type and the commuting graph of finite simple groups, Pacific J. Math. 202(2002), 125226. CMP 2002:08
 [27]
Ákos
Seress, The minimal base size of primitive solvable permutation
groups, J. London Math. Soc. (2) 53 (1996),
no. 2, 243–255. MR 1373058
(96k:20003), http://dx.doi.org/10.1112/jlms/53.2.243
 [28]
T.
A. Springer and R.
Steinberg, Conjugacy classes, Seminar on Algebraic Groups and
Related Finite Groups (The Institute for Advanced Study, Princeton, N.J.,
1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970,
pp. 167–266. MR 0268192
(42 #3091)
 [29]
Robert
Steinberg, Lectures on Chevalley groups, Yale University, New
Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
(57 #6215)
 [30]
Michio
Suzuki, On a class of doubly transitive groups, Ann. of Math.
(2) 75 (1962), 105–145. MR 0136646
(25 #112)
 [31]
J.
Tits, Algebraic and abstract simple groups, Ann. of Math. (2)
80 (1964), 313–329. MR 0164968
(29 #2259)
 [32]
Jacques
Tits, Groupes de Whitehead de groupes algébriques simples
sur un corps (d’après V. P. Platonov et al.),
Séminaire Bourbaki, 29e année (1976/77), Lecture Notes in
Math., vol. 677, Springer, Berlin, 1978, pp. Exp. No. 505, pp.
218–236 (French). MR 521771
(80d:12008)
 [33]
Gerhard
Turnwald, Multiplicative subgroups of finite
index in a division ring, Proc. Amer. Math.
Soc. 120 (1994), no. 2, 377–381. MR 1215206
(94e:12002), http://dx.doi.org/10.1090/S00029939199412152069
 [34]
Adrian
R. Wadsworth, Extending valuations to
finitedimensional division algebras, Proc.
Amer. Math. Soc. 98 (1986), no. 1, 20–22. MR 848866
(87i:16025), http://dx.doi.org/10.1090/S00029939198608488668
 [1]
 S. Amitsur, Finite subgroups of division rings, Trans. AMS 80(1955), 361386. MR 17:577c
 [2]
 M. Aschbacher, G.M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63(1976), 191. MR 54:10391
 [3]
 J.H. Conway et al., ATLAS of finite groups, Clarendon Press, Oxford, 1985. MR 88g:20025
 [4]
 H. Behr, Arithmetic groups over function fields. I. A complete characterization of finitely generated and finitely presented arithmetic subgroups of reductive algebraic groups, J. Reine Angew. Math. 495(1998), 79118. MR 99g:20088
 [5]
 N. Bourbaki, Algèbre commutative, Ch. VVI, Masson, Paris, 1985. MR 86k:13001b
 [6]
 V. Bergelson, D.B. Shapiro, Multiplicative subgroups of finite index in a ring, Proc. AMS 116(1992), 885896. MR 93b:16001
 [7]
 R.W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25(1972), 159. MR 47:6884
 [8]
 , Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, WileyInterscience, 1985. MR 87d:20060
 [9]
 D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Memoirs AMS 276 (1983), 1731. MR 84g:20025
 [10]
 S. Lang, Algebra, AddisonWesley, 1965. MR 33:5416
 [11]
 R. Lawther, M.W. Liebeck, G.M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, to appear, Pacific J. Math.
 [12]
 M.W. Liebeck, G.M. Seitz, Reductive Subgroups of Exceptional Algebraic Groups, Memoirs AMS 580(1996), 1111. MR 96i:20059
 [13]
 G.A. Margulis, Finiteness of quotients of discrete groups, Funct. Analysis and Appl. 13(1979), 178187. MR 80k:22006
 [14]
 R. Pierce, Associative Algebras, GTM 88, Springer, 1982. MR 84c:16001
 [15]
 V.P. Platonov, A.S. Rapinchuk, Algebraic Groups and Number Theory, ``Pure and Applied Mathematics'' series, N 139, Academic Press, 1993. MR 95b:11039
 [16]
 , The multiplicative structure of division algebras over number fields and the Hasse norm principle, Proc. Steklov Inst. Math. 165(1985), 187205. MR 85j:11162
 [17]
 G. Prasad, Strong approximation for semisimple groups over function fields, Ann. Math. 105(1977), 553572. MR 56:2921
 [18]
 M.S. Raghunathan, On the group of norm 1 elements in a division algebra, Math. Ann. 279(1988), 457484. MR 89g:11111
 [19]
 A.S. Rapinchuk, A. Potapchik, Normal subgroups of and the classification of finite simple groups, Proc. Indian Acad. Sci. 106(1996), 329368. MR 98i:20049
 [20]
 A.S. Rapinchuk, Y. Segev, Valuationlike maps and the congruence subgroup property, Invent. Math. 144(2001), 571607. MR 2002e:16027
 [21]
 L. Rowen, Y. Segev, The finite quotients of the multiplicative group of a division algebra of degree 3 are solvable, Israel J. of Math. 111(1999), 373380. MR 2000g:16029
 [22]
 , The multiplicative group of a division algebra of degree 5 and Wedderburn's Factorization Theorem, Contemp. Math. 259(2000), 475486. MR 2001g:16037
 [23]
 Y. Segev, On finite homomorphic images of the multiplicative group of a division algebra, Ann. Math. 149(1999), 219251. MR 2000e:16022
 [24]
 , Some applications of Wedderburn's factorization theorem, Bull. Austral. Math. Soc. 59(1999), 105110. MR 99k:16068
 [25]
 , The commuting graph of minimal nonsolvable groups, Geom. Ded. 88(2001), 5566.
 [26]
 Y. Segev, G.M. Seitz, Anisotropic groups of type and the commuting graph of finite simple groups, Pacific J. Math. 202(2002), 125226. CMP 2002:08
 [27]
 A. Seress, The minimal base size of primitive solvable permutation groups, J. LMS (2) 53(1996), no. 2, 243255. MR 96k:20003
 [28]
 T.A. Springer, R. Steinberg, Conjugacy Classes, Springer Lecture Notes 131 (eds: A. Borel, et al.), Springer, Berlin, 1970. MR 42:3091
 [29]
 R. Steinberg, Lectures on Chevalley Groups, Yale University Lecture Notes, 1967. MR 57:6215
 [30]
 M. Suzuki, On a class of doubly transitive groups, Ann. Math. 75 (1962), 105145. MR 25:112
 [31]
 J. Tits, Algebraic and abstract simple groups, Ann. Math. 80(1964), no. 2, 313329. MR 29:2259
 [32]
 , Groupes de Whitehead de groupes algebriques simples sur un corps (d'apres V.P. Platonov et al.), Sem. Bourbaki, 1977, exp. 505. Lecture Notes in Math. 677(1978), 218236. MR 80d:12008
 [33]
 G. Turnwald, Multiplicative subgroups of finite index in rings, Proc. AMS 120(1994), 377381. MR 94e:12002
 [34]
 A.R. Wadsworth, Extending valuations to finitedimensional division algebras, Proc. AMS 98(1986), 2022. MR 87i:16025
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (1991):
16K20,
16U60,
20G15,
05C25
Retrieve articles in all journals
with MSC (1991):
16K20,
16U60,
20G15,
05C25
Additional Information
Andrei S. Rapinchuk
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
Email:
asr3x@weyl.math.virginia.edu
Yoav Segev
Affiliation:
Department of Mathematics, BenGurion University, BeerSheva 84105, Israel
Email:
yoavs@math.bgu.ac.il
Gary M. Seitz
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 974031226
Email:
seitz@math.uoregon.edu
DOI:
http://dx.doi.org/10.1090/S0894034702003934
PII:
S 08940347(02)003934
Keywords:
Division algebra,
multiplicative group,
finite homomorphic images,
valuations
Received by editor(s):
February 28, 2001
Received by editor(s) in revised form:
January 24, 2002
Published electronically:
June 21, 2002
Additional Notes:
The first author was partially supported by grants from the NSF and by BSF grant no. 9700042
The second author was partially supported by BSF grant no. 9700042. Portions of this work were written while the author visited the Forschungsinstitut für Mathematik ETH, Zurich, in the summer of 2000, and the author gratefully acknowledges the hospitality and support.
The third author was partially supported by grants from the NSF and by BSF grant no. 9700042.
Article copyright:
© Copyright 2002
American Mathematical Society
