Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Families of rationally connected varieties


Authors: Tom Graber, Joe Harris and Jason Starr
Journal: J. Amer. Math. Soc. 16 (2003), 57-67
MSC (2000): Primary 14M20, 14D05
DOI: https://doi.org/10.1090/S0894-0347-02-00402-2
Published electronically: July 29, 2002
MathSciNet review: 1937199
Full-text PDF
View in AMS MathViewer New

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every one-parameter family of complex rationally connected varieties has a section.


References [Enhancements On Off] (What's this?)

  • [B] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. math. 127 (1997), 601-617. MR 98i:14015
  • [BF] K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. math. 128 (1998), 45-88. MR 98e:14022
  • [BM] K. Behrend, Y. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math J. 85, 1-60. MR 98i:14014
  • [Ca] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sc. E. N.S. 25 (1992), 539-545. MR 93k:14050
  • [C] A. Clebsch, Zur Theorie der Riemann'schen Flachen, Math Ann. 6 (1872), 216-230 Springer-Verlag, Berlin, 1996.
  • [FaP] B. Fantechi, R. Pandharipande, Stable maps and branch divisors, Compositio Math. 130 (2002), 345-364.
  • [F] W. Fulton, Hurwitz schemes and moduli of curves, Annals of Math. 90 (1969), 542-575. MR 41:5375
  • [FP] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, 45-96, in Algebraic geometry - Santa Cruz 1995, AMS, 1995. MR 98m:14025
  • [GHS] T. Graber, J. Harris, J. Starr, A note on Hurwitz schemes of covers of a positive genus curve, preprint alg-geom/0205056.
  • [H] A. Hurwitz, Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1-61.
  • [K] J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der Math. 32, Springer-Verlag, Berlin, 1996. MR 98c:14001
  • [KMM] J. Kollár, Y. Miyaoka, S. Mori, Rationally Connected Varieties, J. Alg. Geom. 1 (1992), 429-448. MR 93i:14014

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14M20, 14D05

Retrieve articles in all journals with MSC (2000): 14M20, 14D05


Additional Information

Tom Graber
Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
Email: graber@math.harvard.edu

Joe Harris
Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
Email: harris@math.harvard.edu

Jason Starr
Affiliation: Department of Mathmatics, Massachusetts Institute of technology, Cambridge, Massachusetts 02139
Email: jstarr@math.mit.edu

DOI: https://doi.org/10.1090/S0894-0347-02-00402-2
Received by editor(s): September 6, 2001
Received by editor(s) in revised form: May 3, 2002
Published electronically: July 29, 2002
Additional Notes: The first author was partially supported by an NSF Postdoctoral Fellowship.
The second author was partially supported by NSF grant DMS9900025.
The third author was partially supported by a Sloan Dissertation Fellowship.
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society