Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Maximal properties of the normalized Cauchy transform


Author: Alexei Poltoratski
Journal: J. Amer. Math. Soc. 16 (2003), 1-17
MSC (2000): Primary 30E20
Published electronically: August 27, 2002
MathSciNet review: 1937196
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the normalized Cauchy transform in the unit disk. Our goal is to find an analog of the classical theorem by M. Riesz for the case of arbitrary weights.

Let $\mu $ be a positive finite measure on the unit circle of the complex plane and $f\in L^{1}(\mu )$. Denote by $K\mu $ and $Kf\mu $ the Cauchy integrals of the measures $\mu $ and $f\mu $, respectively. The normalized Cauchy transform is defined as $C_{\mu }: f\mapsto \frac{Kf\mu }{K\mu }$. We prove that $C_{\mu }$ is bounded as an operator in $L^{p}(\mu )$ for $1<p\leq 2$ but is unbounded (in general) for $p>2$. The associated maximal non-tangential operator is bounded for $1<p<2$ and has weak type $(2,2)$ but is unbounded for $p>2$.


References [Enhancements On Off] (What's this?)

  • [A1] A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), no. 5, 490–503, 515 (Russian, with English and Armenian summaries). MR 931885
  • [A2] A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), no. Issled. Linein. Oper. Teorii Funktsii. 17, 7–33, 321 (Russian, with English summary); English transl., J. Soviet Math. 63 (1993), no. 2, 115–129. MR 1039571, 10.1007/BF01099304
  • [A3] A. B. Aleksandrov, On the existence of angular boundary values of pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), no. Issled. po Linein. Oper. i Teor. Funktsii. 23, 5–17, 307 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 87 (1997), no. 5, 3781–3787. MR 1359992, 10.1007/BF02355824
  • [A4] A. B. Aleksandrov, Isometric embeddings of co-invariant subspaces of the shift operator, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 232 (1996), no. Issled. po Linein. Oper. i Teor. Funktsii. 24, 5–15, 213 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 92 (1998), no. 1, 3543–3549. MR 1464420, 10.1007/BF02440138
  • [A5] A. B. Aleksandrov, On the maximum principle for pseudocontinuable functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 217 (1994), no. Issled. po Linein. Oper. i Teor. Funktsii. 22, 16–25, 218 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 85 (1997), no. 2, 1767–1772. MR 1327511, 10.1007/BF02355285
  • [A6] A. B. Aleksandrov, Invariant subspaces of the backward shift operator in the space 𝐻^{𝑝} (𝑝∈(0,1)), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 7–29, 318 (Russian, with English summary). Investigations on linear operators and the theory of functions, IX. MR 566739
  • [C] Douglas N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191. MR 0301534
  • [D] Guy David, Analytic capacity, Cauchy kernel, Menger curvature, and rectifiability, Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 183–197. MR 1743862
  • [F] Otto Frostman, Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund] 12 (1942), no. 15, 169–182 (French). MR 0012127
  • [G] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • [N] N. K. Nikolski, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin-New York, 1986.
  • [NTV] F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices 9 (1998), 463–487. MR 1626935, 10.1155/S1073792898000312
  • [P1] A. Poltoratski, On the boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406.
  • [P2] Alexei G. Poltoratski, On the distributions of boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2455–2463. MR 1327037, 10.1090/S0002-9939-96-03363-1
  • [P3] A. Poltoratski, Properties of Exposed Points in the Unit Ball of $H^{1}$, Indiana Univ. Math. J. 50 (2001), 1789-1806.
  • [P4] A. Poltoratski, The Krein spectral shift and rank one perturbations of spectra, Algebra i Analiz 10 (1998 No 5), 143-183 (Russian; English translation to appear in St. Petersburg Math. J.).
  • [P5] Alexei G. Poltoratski, Finite rank perturbations of singular spectra, Internat. Math. Res. Notices 9 (1997), 421–436. MR 1443321, 10.1155/S1073792897000299
  • [P6] Alexei G. Poltoratski, Equivalence up to a rank one perturbation, Pacific J. Math. 194 (2000), no. 1, 175–188. MR 1756633, 10.2140/pjm.2000.194.175
  • [S] Donald Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons, Inc., New York, 1994. A Wiley-Interscience Publication. MR 1289670
  • [St] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
  • [T] Tolsa X., Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures, Adv. Math. 164 (2001), 57-116.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 30E20

Retrieve articles in all journals with MSC (2000): 30E20


Additional Information

Alexei Poltoratski
Affiliation: Department of Mathemathcs, Texas A&M University, College Station, Texas 77843
Email: alexeip@math.tamu.edu

DOI: https://doi.org/10.1090/S0894-0347-02-00403-4
Keywords: Cauchy integrals, boundary convergence, non-tangential maximal function
Received by editor(s): June 12, 2000
Published electronically: August 27, 2002
Additional Notes: The author is supported in part by N.S.F. grant DMS 9970151
Article copyright: © Copyright 2002 American Mathematical Society