Classification of limiting shapes for isotropic curve flows

Author:
Ben Andrews

Journal:
J. Amer. Math. Soc. **16** (2003), 443-459

MSC (2000):
Primary 53C44; Secondary 35K55, 53A04

Published electronically:
December 11, 2002

MathSciNet review:
1949167

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete classification is given of curves in the plane which contract homothetically when evolved according to a power of their curvature. Applications are given to the limiting behaviour of the flows in various situations.

**1.**U. Abresch and J. Langer,*The normalized curve shortening flow and homothetic solutions*, J. Differential Geom.**23**(1986), no. 2, 175–196. MR**845704****2.**Ben Andrews,*Contraction of convex hypersurfaces by their affine normal*, J. Differential Geom.**43**(1996), no. 2, 207–230. MR**1424425****3.**Ben Andrews,*Monotone quantities and unique limits for evolving convex hypersurfaces*, Internat. Math. Res. Notices**20**(1997), 1001–1031. MR**1486693**, 10.1155/S1073792897000640**4.**Ben Andrews,*Evolving convex curves*, Calc. Var. Partial Differential Equations**7**(1998), no. 4, 315–371. MR**1660843**, 10.1007/s005260050111**5.**Ben Andrews,*Motion of hypersurfaces by Gauss curvature*, Pacific J. Math.**195**(2000), no. 1, 1–34. MR**1781612**, 10.2140/pjm.2000.195.1**6.**-,*Nonconvergence and instability in the asymptotic behaviour of curves evolving by curvature*, Comm. Anal. Geom.**10**(2002), 409-449.**7.**Sigurd Angenent, Guillermo Sapiro, and Allen Tannenbaum,*On the affine heat equation for non-convex curves*, J. Amer. Math. Soc.**11**(1998), no. 3, 601–634. MR**1491538**, 10.1090/S0894-0347-98-00262-8**8.**Bennett Chow and Dong-Ho Tsai,*Geometric expansion of convex plane curves*, J. Differential Geom.**44**(1996), no. 2, 312–330. MR**1425578****9.**K.-S. Chou and X.-P. Zhu, ``The Curve Shortening Problem'', Chapman and Hall/CRC (2000).**10.**Kai-Seng Chou and Xi-Ping Zhu,*A convexity theorem for a class of anisotropic flows of plane curves*, Indiana Univ. Math. J.**48**(1999), no. 1, 139–154. MR**1722196**, 10.1512/iumj.1999.48.1273**11.**Michael E. Gage,*An isoperimetric inequality with applications to curve shortening*, Duke Math. J.**50**(1983), no. 4, 1225–1229. MR**726325**, 10.1215/S0012-7094-83-05052-4**12.**M. E. Gage,*Curve shortening makes convex curves circular*, Invent. Math.**76**(1984), no. 2, 357–364. MR**742856**, 10.1007/BF01388602**13.**Claus Gerhardt,*Flow of nonconvex hypersurfaces into spheres*, J. Differential Geom.**32**(1990), no. 1, 299–314. MR**1064876****14.**Matthew A. Grayson,*The heat equation shrinks embedded plane curves to round points*, J. Differential Geom.**26**(1987), no. 2, 285–314. MR**906392****15.**M. Gage and R. S. Hamilton,*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), no. 1, 69–96. MR**840401****16.**Richard S. Hamilton,*Isoperimetric estimates for the curve shrinking flow in the plane*, Modern methods in complex analysis (Princeton, NJ, 1992) Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, pp. 201–222. MR**1369140**, 10.1016/1053-8127(94)00130-3**17.**Gerhard Huisken,*A distance comparison principle for evolving curves*, Asian J. Math.**2**(1998), no. 1, 127–133. MR**1656553**, 10.4310/AJM.1998.v2.n1.a2**18.**Jeffrey A. Oaks,*Singularities and self-intersections of curves evolving on surfaces*, Indiana Univ. Math. J.**43**(1994), no. 3, 959–981. MR**1305955**, 10.1512/iumj.1994.43.43042**19.**Guillermo Sapiro and Allen Tannenbaum,*On affine plane curve evolution*, J. Funct. Anal.**119**(1994), no. 1, 79–120. MR**1255274**, 10.1006/jfan.1994.1004**20.**Richard Montgomery,*Survey of singular geodesics*, Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 325–339. MR**1421824****21.**John I. E. Urbas,*Correction to: “An expansion of convex hypersurfaces” [J. Differential Geom. 33 (1991), no. 1, 91–125; MR1085136 (91j:58155)]*, J. Differential Geom.**35**(1992), no. 3, 763–765. MR**1163459****22.**John I. E. Urbas,*On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures*, Math. Z.**205**(1990), no. 3, 355–372. MR**1082861**, 10.1007/BF02571249**23.**John Urbas,*Convex curves moving homothetically by negative powers of their curvature*, Asian J. Math.**3**(1999), no. 3, 635–656. MR**1793674**, 10.4310/AJM.1999.v3.n3.a4

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
53C44,
35K55,
53A04

Retrieve articles in all journals with MSC (2000): 53C44, 35K55, 53A04

Additional Information

**Ben Andrews**

Affiliation:
Centre for Mathematics and its Applications, Australian National University, ACT 0200, Australia

Email:
andrews@maths.anu.edu.au

DOI:
https://doi.org/10.1090/S0894-0347-02-00415-0

Received by editor(s):
November 4, 2002

Published electronically:
December 11, 2002

Additional Notes:
Research supported by a grant from the Australian Research Council

Article copyright:
© Copyright 2002
American Mathematical Society