Classification of limiting shapes for isotropic curve flows

Author:
Ben Andrews

Journal:
J. Amer. Math. Soc. **16** (2003), 443-459

MSC (2000):
Primary 53C44; Secondary 35K55, 53A04

DOI:
https://doi.org/10.1090/S0894-0347-02-00415-0

Published electronically:
December 11, 2002

MathSciNet review:
1949167

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A complete classification is given of curves in the plane which contract homothetically when evolved according to a power of their curvature. Applications are given to the limiting behaviour of the flows in various situations.

**1.**U. Abresch and J. Langer,*The normalised curve shortening flow and homothetic solutions*, J. Differential Geom.**23**(1986), 175-196. MR**88d:53001****2.**B. Andrews,*Contraction of convex hypersurfaces by their affine normal*, J. Differential Geom.**43**(1996), 207-230. MR**97m:58045****3.**-,*Monotone quantities and unique limits for evolving convex hypersurfaces*, Internat. Math. Res. Notices**20**(1997), 1001-1031. MR**99a:58041****4.**-,*Evolving convex curves*, Calc. Var. Partial Differential Equations**7**(1998), no 3, 315-371. MR**99k:58038****5.**-,*Motion of hypersurfaces by Gauss curvature*, Pacific J. Math.**195**(2000), 1-34. MR**2001i:53108****6.**-,*Nonconvergence and instability in the asymptotic behaviour of curves evolving by curvature*, Comm. Anal. Geom.**10**(2002), 409-449.**7.**S. Angenent, G. Sapiro and A. Tannenbaum,*On the affine heat equation for non-convex curves*, J. Amer. Math. Soc.**11**(1998), 601-634. MR**99d:58039****8.**B. Chow and H.-D. Tsai,*Geometric expansion of convex plane curves*, J. Differential Geom.**44**(1996), 312-330. MR**97m:58041****9.**K.-S. Chou and X.-P. Zhu, ``The Curve Shortening Problem'', Chapman and Hall/CRC (2000).**10.**-,*A convexity theorem for a class of anisotropic flows of plane curves*, Indiana Univ. Math. J.**48**(1999), 139-154. MR**2000m:53098****11.**M. Gage,*An isoperimetric inequality with applications to curve shortening*, Duke Math. J.**50**(1983), 1225-1229. MR**85d:52007****12.**-,*Curve shortening makes convex curves circular*, Invent. Math.**76**(1984), 357-364. MR**85i:52004****13.**C. Gerhardt,*Flow of nonconvex hypersurfaces into spheres*, J. Differential Geom.**32**(1990), 299-314. MR**91k:53016****14.**M. Grayson,*The heat equation shrinks embedded plane curves to round points*, J. Differential Geom.**26**(1987), 285-314. MR**89b:53005****15.**M. Gage and R. Hamilton,*The heat equation shrinking convex plane curves*, J. Differential Geom.**23**(1986), 69-96. MR**87m:53003****16.**R. Hamilton,*Isoperimetric estimates for the curve shrinking flow in the plane*, Ann. of Math. Stud.**137**(1995), 201-222. MR**96k:58043****17.**G. Huisken,*A distance comparison principle for evolving curves*, Asian J. Math.**2**(1998), 127-133. MR**99m:58052****18.**J. Oaks,*Singularities and self-intersections of curves evolving on surfaces*, Indiana Univ. Math. J.**43**(1994), 959-981. MR**95k:58039****19.**G. Sapiro and A. Tannenbaum,*On affine plane curve evolution*, J. Funct. Anal.**119**(1994), 79-120. MR**94m:58049****20.**D.-H. Tsai,*Geometric expansion of star-shaped plane curves*, Comm. Anal. Geom.**4**(1996), 459-480. MR**97m:58042****21.**J. Urbas,*An expansion of convex hypersurfaces*, J. Differential Geom.**33**(1991), 91-125; Correction to, ibid.**35**, 763-765. MR**93b:58142****22.**-,*On the expansion of star-shaped hypersurfaces by symmetric functions of their principal curvatures*, Math. Z.**205**(1990), 355-372. MR**92c:53037****23.**-,*Convex curves moving homothetically by negative powers of their curvature*, Asian J. Math.**3**(1999), 635-656. MR**2001m:53119**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
53C44,
35K55,
53A04

Retrieve articles in all journals with MSC (2000): 53C44, 35K55, 53A04

Additional Information

**Ben Andrews**

Affiliation:
Centre for Mathematics and its Applications, Australian National University, ACT 0200, Australia

Email:
andrews@maths.anu.edu.au

DOI:
https://doi.org/10.1090/S0894-0347-02-00415-0

Received by editor(s):
November 4, 2002

Published electronically:
December 11, 2002

Additional Notes:
Research supported by a grant from the Australian Research Council

Article copyright:
© Copyright 2002
American Mathematical Society