Oort's conjecture for

Authors:
Sean Keel and Lorenzo Sadun

Journal:
J. Amer. Math. Soc. **16** (2003), 887-900

MSC (2000):
Primary 14K10

DOI:
https://doi.org/10.1090/S0894-0347-03-00431-4

Published electronically:
May 30, 2003

MathSciNet review:
1992828

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the conjecture of Oort that a compact subvariety of the moduli space of principally polarized Abelian varieties of genus has codimension strictly greater than , in characteristic zero, for .

**[BD85]**T. Brocker and T. tom Dieck,*Representations of Compact Lie Groups*, Springer, 1985. MR**86i:22023****[BT82]**R. Bott and L. Tu,*Differential Forms in Algebraic Topology*, Springer, 1982. MR**83i:57016****[CP90]**E. Colombo and G. P Pirola,*Some density results for curves with nonsimple Jacobians*, Math. Ann.**288**(1990), 161-178. MR**91h:14030****[Diaz87]**S. Diaz,*Complete subvarieties of the moduli space of smooth curves*, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Amer. Math. Soc., Providence, RI, 1987, pp. 77-81. MR**89b:14039****[EV02]**H. Esnault and E. Viehweg,*Chern classes of Gauss-Manin bundles of weight**vanish*, preprint math.AG/020103, 2002.**[Faber99]**C. Faber,*A Conjectural Description of the Tautological Ring of the Moduli Space of Curves*, Moduli of Curves and Abelian Varieties, 1999, pp. 109-125. MR**2000j:14044****[FL99]**C. Faber and E. Looijenga,*Remarks on Moduli of Curves*, Moduli of Curves and Abelian Varieties, 1999, pp. 23-39. MR**2001b:14044****[FP00]**C. Faber and R. Pandharipande,*Logarithmic Series and Hodge Integrals in the Tautological Ring*, Michigan Math. Jour.**48**(2000), 21-239. MR**2002e:14041****[Fulton84]**W. Fulton,*Intersection Theory*, Springer-Verlag, 1984. MR**85k:14004****[Griffiths84]**P. Griffiths,*Curvature Properties of the Hodge bundles*, Ann. of Math. Stud.**106**(1984), 29-49. MR**86b:14004****[GH78]**P. Griffiths and J. Harris,*Principles of Algebraic Geometry*, Wiley-Interscience, 1978. MR**80b:14001****[G99]**G. van der Geer,*Cycles on the Moduli Space of Abelian Varieties*, Moduli of Curves and Abelian Varieties, 1999, pp. 65-88. MR**2001b:14009****[GO99]**G. van der Geer and F. Oort,*Moduli of Abelian Varieties: A Short Introduction and Survey*, Moduli of Curves and Abelian Varieties, 1999, pp. 1-17. MR**2001a:14048****[Izadi98]**E. Izadi,*Density and completeness of subvarieties of moduli spaces of curves or abelian varieties*, Math. Ann.**310**(1998), 221-233. MR**99m:14048****[Mumford83]**D. Mumford,*Towards an enumerative geometry of the moduli space of curves*, Progress in Math.**36**(1983), 271-328. MR**85j:14046****[Kempf91]**G. Kempf,*Complex Abelian Varieties and Theta Functions*, Springer-Verlag, 1991. MR**92h:14028****[Koblitz75]**N. Koblitz,*-adic variation of the zeta-function over families of varieties defined over finite fields*, Compos. Math.**31**(1975), 119-218. MR**54:2658****[Serre65]**J.P. Serre,*Lie algebras and Lie groups*, Lectures given at Harvard University, 1964, W. A. Benjamin, Inc., 1965. MR**36:1582****[Zimmer84]**R. Zimmer,*Ergodic theory and semisimple groups*, Birkhauser Verlag, 1984. MR**86j:22014**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
14K10

Retrieve articles in all journals with MSC (2000): 14K10

Additional Information

**Sean Keel**

Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712

Email:
keel@math.utexas.edu

**Lorenzo Sadun**

Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, Texas, 78712

Email:
sadun@math.utexas.edu

DOI:
https://doi.org/10.1090/S0894-0347-03-00431-4

Received by editor(s):
May 1, 2002

Published electronically:
May 30, 2003

Additional Notes:
The first author was partially supported by NSF grant DMS-9988874

The second author was partially supported by Texas ARP grant 003658-152

Article copyright:
© Copyright 2003
American Mathematical Society