Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Wiener's lemma for twisted convolution and Gabor frames

Authors: Karlheinz Gröchenig and Michael Leinert
Journal: J. Amer. Math. Soc. 17 (2004), 1-18
MSC (2000): Primary 22D25, 42C15; Secondary 22E25, 47B38, 47C15
Published electronically: September 26, 2003
MathSciNet review: 2015328
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove non-commutative versions of Wiener's Lemma on absolutely convergent Fourier series (a) for the case of twisted convolution and (b) for rotation algebras. As an application we solve some open problems about Gabor frames, among them the problem of Feichtinger and Janssen that is known in the literature as the ``irrational case''.

References [Enhancements On Off] (What's this?)

  • 1. B. A. Barnes.
    When is the spectrum of a convolution operator on $L\sp p$ independent of $p$?
    Proc. Edinburgh Math. Soc. (2), 33(2):327-332, 1990. MR 91f:47046
  • 2. H. Bölcskei and A. J. E. M. Janssen.
    Gabor frames, unimodularity, and window decay.
    J. Fourier Anal. Appl., 6(3):255-276, 2000. MR 2001b:42044
  • 3. I. Daubechies.
    The wavelet transform, time-frequency localization and signal analysis.
    IEEE Trans. Inform. Theory, 36(5):961-1005, 1990. MR 91e:42038
  • 4. I. Daubechies, H. J. Landau, and Z. Landau.
    Gabor time-frequency lattices and the Wexler-Raz identity.
    J. Fourier Anal. Appl., 1(4):437-478, 1995. MR 96i:42021
  • 5. K. R. Davidson.
    ${C}\sp *$-algebras by example.
    American Mathematical Society, Providence, RI, 1996. MR 97i:46095
  • 6. G. A. Elliott and D. E. Evans.
    The structure of the irrational rotation ${C}\sp *$-algebra.
    Ann. of Math. (2), 138(3):477-501, 1993. MR 94j:46066
  • 7. H. G. Feichtinger.
    On a new Segal algebra.
    Monatsh. Math., 92(4):269-289, 1981. MR 83a:43002
  • 8. H. G. Feichtinger and K. Gröchenig.
    Banach spaces related to integrable group representations and their atomic decompositions. II.
    Monatsh. Math., 108(2-3):129-148, 1989. MR 91g:43012
  • 9. H. G. Feichtinger and K. Gröchenig.
    Gabor frames and time-frequency analysis of distributions.
    J. Functional Anal., 146(2):464-495, 1997. MR 98k:42041
  • 10. H. G. Feichtinger and T. Strohmer, editors.
    Gabor analysis and algorithms: theory and applications.
    Birkhäuser Boston, Boston, MA, 1998. MR 98h:42001
  • 11. G. B. Folland.
    Harmonic Analysis in Phase Space.
    Princeton Univ. Press, Princeton, NJ, 1989. MR 92k:22017
  • 12. I. Gel'fand, D. Raikov, and G. Shilov.
    Commutative normed rings.
    Chelsea Publishing Co., New York, 1964. MR 34:4940
  • 13. K. Gröchenig.
    An uncertainty principle related to the Poisson summation formula.
    Studia Math., 121(1):87-104, 1996. MR 98a:42007
  • 14. K. Gröchenig.
    Foundations of time-frequency analysis.
    Birkhäuser Boston Inc., Boston, MA, 2001. MR 2002h:42001
  • 15. R. Howe.
    On the role of the Heisenberg group in harmonic analysis.
    Bull. Amer. Math. Soc. (N.S.), 3(2):821-843, 1980. MR 81h:22010
  • 16. A. Hulanicki.
    On the spectrum of convolution operators on groups with polynomial growth.
    Invent. Math., 17:135-142, 1972. MR 48:2304
  • 17. A. J. E. M. Janssen.
    Duality and biorthogonality for Weyl-Heisenberg frames.
    J. Fourier Anal. Appl., 1(4):403-436, 1995. MR 97e:42007
  • 18. A. J. E. M. Janssen.
    On rationally oversampled Weyl-Heisenberg frames.
    Signal Proc., 47:239-245, 1995.
  • 19. H. Leptin.
    The structure of ${L}\sp{1}({G})$ for locally compact groups.
    In Operator algebras and group representations, Vol. II (Neptun, 1980), pages 48-61. Pitman, Boston, Mass., 1984. MR 85d:22015
  • 20. V. Losert.
    On the structure of groups with polynomial growth. II.
    J. London Math. Soc. (2), 63(3):640-654, 2001. MR 2002f:22007
  • 21. J. Ludwig.
    A class of symmetric and a class of Wiener group algebras.
    J. Funct. Anal., 31(2):187-194, 1979. MR 81a:43007
  • 22. M. A. Na{\u{\i}}\kern.15emmark.
    Normed algebras.
    Wolters-Noordhoff Publishing, Groningen, third edition, 1972.
    Translated from the second Russian edition by Leo F. Boron, Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics. MR 55:11042
  • 23. A. L. T. Paterson.
    American Mathematical Society, Providence, RI, 1988. MR 90e:43001
  • 24. T. Pytlik.
    On the spectral radius of elements in group algebras.
    Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 21:899-902, 1973. MR 48:6818
  • 25. C. E. Rickart.
    General theory of Banach algebras.
    D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
    The University Series in Higher Mathematics. MR 22:5903
  • 26. M. A. Rieffel.
    Von Neumann algebras associated with pairs of lattices in Lie groups.
    Math. Ann., 257(4):403-418, 1981. MR 84f:22010
  • 27. M. A. Rieffel.
    Projective modules over higher-dimensional noncommutative tori.
    Canad. J. Math., 40(2):257-338, 1988. MR 89m:46110
  • 28. A. Ron and Z. Shen.
    Weyl-Heisenberg frames and Riesz bases in ${L}\sb 2(\mathbb{R} \sp d)$.
    Duke Math. J., 89(2):237-282, 1997. MR 98i:42013
  • 29. T. Strohmer.
    Approximation of dual Gabor frames, window decay, and wireless communications.
    Appl. Comput. Harmon. Anal., 11(2):243-262, 2001. MR 2002j:42049
  • 30. R. Tolimieri and R. S. Orr.
    Poisson summation, the ambiguity function, and the theory of Weyl-Heisenberg frames.
    J. Fourier Anal. Appl., 1(3):233-247, 1995. MR 97c:94001
  • 31. D. F. Walnut.
    Continuity properties of the Gabor frame operator.
    J. Math. Anal. Appl., 165(2):479-504, 1992. MR 93f:42059
  • 32. M. Zibulski and Y. Y. Zeevi.
    Analysis of multiwindow Gabor-type schemes by frame methods.
    Appl. Comput. Harmon. Anal., 4(2):188-221, 1997. MR 98f:42035

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 22D25, 42C15, 22E25, 47B38, 47C15

Retrieve articles in all journals with MSC (2000): 22D25, 42C15, 22E25, 47B38, 47C15

Additional Information

Karlheinz Gröchenig
Affiliation: Department of Mathematics, The University of Connecticut, Storrs, CT 06269-3009

Michael Leinert
Affiliation: Institut für Angewandte Mathematik, Fakultät für Mathematik, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany

Keywords: Twisted convolution, Heisenberg group, Wiener's Lemma, symmetric group algebra, Gabor frame, modulation space, window design, invertibility of operators
Received by editor(s): July 1, 2001
Published electronically: September 26, 2003
Additional Notes: The first author acknowledges partial support by the Austrian Science Foundation (FWF) under project no. P14485-MAT
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society