Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Almost optimal local well-posedness for the (3+1)-dimensional Maxwell-Klein-Gordon equations


Authors: Matei Machedon and Jacob Sterbenz
Journal: J. Amer. Math. Soc. 17 (2004), 297-359
MSC (2000): Primary 35Q60, 35L70
DOI: https://doi.org/10.1090/S0894-0347-03-00445-4
Published electronically: November 13, 2003
MathSciNet review: 2051613
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the evolution problem for the Maxwell-Klein-Gordon system is locally well posed when the initial data belong to the Sobolev space $H^{\frac{1}{2} + \epsilon}$ for any $\epsilon > 0$. This is in spite of a complete failure of the standard model equations in the range $\frac{1}{2} < s < \frac{3}{4}$. The device that enables us to obtain inductive estimates is a new null structure which involves cancellations between the elliptic and hyperbolic terms in the full equations.


References [Enhancements On Off] (What's this?)

  • 1. Jean Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations I, II. Geom. Funct. Analysis 3 (1993), 107-156, 202-262.MR 95d:35160a; MR 95d:35160b
  • 2. D. Christodoulou, S. Klainerman, Asymptotic properties of linear field equations in Minkowski space. Comm. Pure Appl. Math. 43 (1990), no. 2, 137-199.MR 91a:58202
  • 3. Scippio Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\mathbb{R} ^{3+1}$. Comm. P.D.E. 24 (1999), no. 5-6, 851-867.MR 2000c:35203
  • 4. Douglas Eardley, Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space I. Local existence and smoothness properties. Comm. Math. Phys. 83 (1982), no. 2, 171-191.MR 83e:35106a
  • 5. Douglas Eardley, Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space II. Completion of proof. Comm. Math. Phys. 83 (1982), no. 2, 193-212. MR 83e:35106b
  • 6. D. Foschi, S. Klainerman, Bilinear space-time estimates for homogeneous wave equations. Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 211-274.MR 2001g:35145
  • 7. Markus Keel, Terence Tao, Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), no. 5, 955-980. MR 2000d:35018
  • 8. Markus Keel, Terence Tao, Global well-posedness of the Maxwell-Klein-Gordon Equation below the energy norm. Preprint.
  • 9. C. Kenig, G Ponce, L. Vega, The Cauchy problem for the K-dV equation in Sobolev spaces with negative indices. Duke Math Journal 71 (1994), no. 1, 1-21. MR 94g:35196
  • 10. Joachim Krieger, Global regularity of wave maps from $ R\sp {3+1}$ to surfaces. Comm. Math. Phys. 238 (2003), no. 1-2, 333-366.
  • 11. Joachim Krieger, Global regularity of wave maps from $ R\sp {2+1}$ to the hyperbolic plane. Preprint.
  • 12. Sergiu Klainerman, Matei Machedon, Space-time estimates for null forms and the local existence theorem, Comm Pure Appl. Math. 46 (1993), 1221-1268.
  • 13. Sergiu Klainerman, Geometric and Fourier Methods in Nonlinear Wave Equations, available at http://www.math.princeton.edu/seri/homepage/seri.htm.
  • 14. Sergiu Klainerman, Matei Machedon, On the Maxwell-Klein-Gordon Equations with finite energy. Duke Math Journal 74 (1994), no. 1, 19-44.MR 95f:35210
  • 15. Sergiu Klainerman, Matei Machedon, Smoothing estimates for null forms and applications. Duke Math Journal 81 (1995), no. 1, 99-103.MR 97h:35022
  • 16. Sergiu Klainerman, Matei Machedon, Estimates for null forms and the spaces $H^{s, \delta}$. Internat. Math. Res. Notices 1996, no. 17, 853-866.MR 98j:46028
  • 17. Sergiu Klainerman, Matei Machedon, with appendices by Jean Bourgain and Daniel Tataru, Remark on Strichartz type inequalities. Internat. Math. Res. Notices 1996, no. 5, 201-220. MR 97g:46037
  • 18. Sergiu Klainerman, Matei Machedon, On the optimal local regularity for gauge field theories. Differential and Integral Equations 10 (1997), no. 6, 1019-1030.MR 2000d:58043
  • 19. Sergiu Klainerman, Igor Rodnianski, On the global regularity of wave maps in the critical Sobolev norm. Internat. Math. Res. Notices 2001, no. 13, 655-677.MR 2002h:58051
  • 20. Sergiu Klainerman, Igor Rodnianski, Improved local well-posedness for quasilinear wave equations in dimension three. Duke Math. J. 117 (2003), no. 1, 1-124.
  • 21. Sergiu Klainerman, Igor Rodnianski, Rough Solutions to the Einstein Vacuum Equations. Preprint.
  • 22. Sergiu Klainerman, Igor Rodnianski, Terence Tao, A physical space approach to wave equation bilinear estimates. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87 (2002), 299-336.
  • 23. Sergiu Klainerman, Daniel Tataru, On the optimal local regularity for the Yang-Mills equations in $\mathbb{R} ^{4+1}$. Journal of the AMS 12 (1999), no. 1, 93-116.MR 2000c:58052
  • 24. Hans Lindblad, A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations. Duke Math Journal 72 (1993), no. 2, 503-539.MR 94h:35165
  • 25. Jalal Shatah, Michael Struwe, The Cauchy problem for wave maps. Internat. Math. Res. Notices 2002, no. 11, 555-571.
  • 26. Wei-Tong Shu, Global existence of Maxwell-Higgs fields. Nonlinear hyperbolic equations and field theory (Lake Como, 1990), 214-227, Pitman Res. Notes Math. Ser., 253, Longman Sci. Tech., Harlow, 1992. MR 93h:81092
  • 27. Igor Rodnianski, Terence Tao, Global regularity for the Maxwell-Klein-Gordon equations with small critical Sobolev norm in high dimensions. Preprint.
  • 28. Jacob Sterbenz, Global regularity for generic non-linear wave equations in high dimensions I. Critical Besov space in $(6+1)$-D. University of Maryland thesis.
  • 29. Terence Tao, Low regularity semi-linear wave equations. Comm. P.D.E. 24 (1999), no. 3-4, 599-629.MR 2000a:35175
  • 30. Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 2001, no. 6, 299-328.MR 2001m:35200
  • 31. Terence Tao, Global regularity of wave maps II. Small energy in two dimensions. Comm. Math. Phys. 224 (2001), no. 2, 443-544.MR 2002h:58052
  • 32. Daniel Tataru, Local and global results for wave maps I. Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781-1793.MR 99j:58209
  • 33. Daniel Tataru, On the equation $\Box u = \vert\nabla u\vert^2$in $5+1$ dimensions. Math. Res. Lett. 6 (1999), no. 5-6, 469-485. MR 2001k:35219
  • 34. Daniel Tataru, On global existence and scattering for the wave maps equation. Amer. J. Math. 123 (2001), no. 1, 37-77. MR 2002c:58045
  • 35. Daniel Tataru, Rough solutions for the Wave-Maps equation. Preprint.
  • 36. Hart Smith, Daniel Tataru, Sharp local well-posedness results for the nonlinear wave equation. Preprint.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35Q60, 35L70

Retrieve articles in all journals with MSC (2000): 35Q60, 35L70


Additional Information

Matei Machedon
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email: mxm@math.umd.edu

Jacob Sterbenz
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email: jks@math.umd.edu, sterbenz@math.princeton.edu

DOI: https://doi.org/10.1090/S0894-0347-03-00445-4
Received by editor(s): October 16, 2002
Published electronically: November 13, 2003
Additional Notes: Both authors were supported by NSF grant DMS-0100406.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society