Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Isoperimetric inequalities in crystallography


Author: Antonio Ros
Journal: J. Amer. Math. Soc. 17 (2004), 373-388
MSC (2000): Primary 53A10, 53C42, 20H15
Published electronically: December 2, 2003
MathSciNet review: 2051615
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a cubic space group $\mathcal G$ (viewed as a finite group of isometries of the torus $T=\mathbb{R} ^3/\mathbb{Z} ^3$), we obtain sharp isoperimetric inequalities for $\mathcal G$-invariant regions. These inequalities depend on the minimum number of points in an orbit of $\mathcal G$and on the largest Euler characteristic among nonspherical $\mathcal G$-symmetric surfaces minimizing the area under volume constraint (we also give explicit estimates of this second invariant for the various crystallographic cubic groups $\mathcal G$). As an example, we prove that any surface dividing $T$ into two equal volumes with the same (orientation-preserving) symmetries as the A. Schoen minimal Gyroid has area at least $3.00$ (the conjectured minimizing surface in this case is the Gyroid itself whose area is $3.09$).


References [Enhancements On Off] (What's this?)

  • 1. A. D. Aleksandrov, Uniqueness theorems for surfaces in the large. I, Vestnik Leningrad. Univ. 11 (1956), no. 19, 5–17 (Russian). MR 0086338
  • 2. D. M. Anderson, H. T. Davis, J. C. C. Nitsche, and L. E. Scriven, Periodic Surfaces of Prescribed Mean Curvature, Advances in Chemical Physics 77 (1990), 337-396.
  • 3. F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 0420406
  • 4. Christophe Bavard and Pierre Pansu, Sur le volume minimal de 𝑅², Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 479–490 (French). MR 875084
  • 5. William D. Dunbar, Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988), no. 1-3, 67–99. MR 977042
  • 6. W. Fischer and E. Koch, Spanning minimal surfaces, Philos. Trans. Roy. Soc. London Ser. A 354 (1996), no. 1715, 2105–2142. MR 1421041, 10.1098/rsta.1996.0094
  • 7. P. J. F. Gandy and J. Klinowski, Exact computation of the triply periodic G (Gyroid) minimal surface, Chem. Phys. Lett. 321 (2000), 363-371.
  • 8. E. Gonzalez, U. Massari, and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), no. 1, 25–37. MR 684753, 10.1512/iumj.1983.32.32003
  • 9. Karsten Große-Brauckmann, Gyroids of constant mean curvature, Experiment. Math. 6 (1997), no. 1, 33–50. MR 1464580
  • 10. H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie, Monatsh. Math. 76 (1972), 410–418 (German). MR 0324550
  • 11. T. Hahn, editor, International Tables for Crystallography, vol. A, fifth edition, Kluwer Academic Publishers, 2002.
  • 12. L. Hauswirth, J. Pérez, P. Romon, and A. Ros, The periodic isoperimetric problem, Trans. Amer. Math. Soc. (to appear), http://www.ugr.es/$\sim$aros/periodic.htm.
  • 13. S. T. Hyde, Identification of lyotropic liquid crystalline mesophases, Handbook of applied surface and colloid chemistry, edited by K. Holmberg, John Wiley & Sons, Ltd., 2001.
  • 14. C. K. Johnson, M. N. Burnett, and W. D. Dunbar, Crystallographic topology and its applications, preprint.
  • 15. Hermann Karcher and Konrad Polthier, Construction of triply periodic minimal surfaces, Philos. Trans. Roy. Soc. London Ser. A 354 (1996), no. 1715, 2077–2104. MR 1421040, 10.1098/rsta.1996.0093
  • 16. Nicholas J. Korevaar, Rob Kusner, and Bruce Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), no. 2, 465–503. MR 1010168
  • 17. E. A. Lord and A. L. Mackay, Periodic minimal surfaces of cubic symmetry, Current Science, 85 (2003), 346-362.
  • 18. E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, S. Ivantchev, G. Madariaga, and H. Wondratschek, The Bilbao Crystallographic Server: a web site with crystallographic tools using the International Tables for Crystallography, 18th European Crystallographic Meeting, Praha, Czech Republic (1998), http://www.cryst.ehu.es.
  • 19. W. H. Meeks III, Lectures on Plateau's problem, Scola de Geometria Diferencial, Universidade Federal do Ceará (Brazil), 1978.
  • 20. F. Morgan, Regularity of isoperimetric hypersurfaces in Riemannian manifolds, Trans. Amer. Math. Soc., 355 (2003), 5041-5052.
  • 21. -, Regularity of area-minimizing surfaces in 3D polytopes and of invariant surfaces in $\mathbb{R} ^n$, preprint (2003).
  • 22. Frank Morgan and David L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), no. 3, 1017–1041. MR 1803220, 10.1512/iumj.2000.49.1929
  • 23. M. O’Keeffe, J. Plévert, Y. Teshima, Y. Watanabe, and T. Ogama, The invariant cubic rod (cylinder) packings: symmetries and coordinates, Acta Cryst. Sect. A 57 (2001), no. 1, 110–111. MR 1805573, 10.1107/S010876730001151X
  • 24. M. O’Keeffe, J. Plévert, and T. Ogawa, Homogeneous cubic cylinder packings revisited, Acta Crystallogr. Sect. A 58 (2002), no. 2, 125–132. MR 1897189, 10.1107/S0108767301019134
  • 25. Manuel Ritoré and Antonio Ros, Stable constant mean curvature tori and the isoperimetric problem in three space forms, Comment. Math. Helv. 67 (1992), no. 2, 293–305. MR 1161286, 10.1007/BF02566501
  • 26. Manuel Ritoré and Antonio Ros, The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds, Trans. Amer. Math. Soc. 348 (1996), no. 1, 391–410. MR 1322955, 10.1090/S0002-9947-96-01496-1
  • 27. A. Ros, The isoperimetric problem, Proceedings of the Clay Mathematical Institute MSRI summer school on Minimal Surfaces (to appear), http://www.ugr.es/$\sim$aros/isoper.htm.
  • 28. A. H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Technical Note No. TN D-5541 (1970).
  • 29. U. S. Schwarz and G. Gompper, Bicontinuous surfaces in self-assembling amphiphilic systems, Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems, edited by K. R. Mecke and D. Stoyan, Springer Lecture Notes in Physics, Vol. 600, pp. 107-151, 2002.
  • 30. E. L Thomas, D. M. Anderson, C.S. Henkee, and D. Hoffman, Periodic area-minimizing surfaces in block copolymers, Nature 334 (1988), 598-602.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53A10, 53C42, 20H15

Retrieve articles in all journals with MSC (2000): 53A10, 53C42, 20H15


Additional Information

Antonio Ros
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: aros@ugr.es

DOI: https://doi.org/10.1090/S0894-0347-03-00447-8
Keywords: Isoperimetric problem, periodic minimal surfaces, cubic symmetry
Received by editor(s): March 17, 2003
Published electronically: December 2, 2003
Additional Notes: Partially supported by MCYT-FEDER research projects BFM2001-3318
Article copyright: © Copyright 2003 American Mathematical Society