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IDEAL MEMBERSHIP IN POLYNOMIAL RINGS
OVER THE INTEGERS

MATTHIAS ASCHENBRENNER

Introduction

The following well-known theorem, due to Grete Hermann [20], 1926, gives an
upper bound on the complexity of the ideal membership problem for polynomial
rings over fields:

Theorem. Consider polynomials f0, . . . , fn ∈ F [X ] = F [X1, . . . , XN ] of (total)
degree ≤ d over a field F . If f0 ∈ (f1, . . . , fn), then

f0 = g1f1 + · · ·+ gnfn

for certain g1, . . . , gn ∈ F [X ] whose degrees are bounded by β, where β = β(N, d)
depends only on N and d (and not on the field F or the particular polynomials
f0, . . . , fn).

This theorem was a first step in Hermann’s project, initiated by work of Hentzelt
and Noether [19], to construct bounds for some of the central operations of com-
mutative algebra in polynomial rings over fields. A simplified and corrected proof
was published by Seidenberg [35] in the 1970s, with an explicit but incorrect bound
β(N, d). In [31, p. 92], it was shown that one may take

β(N, d) = (2d)2N .

We will reproduce a proof, using Hermann’s classical method, in Section 3 below.
Note that the computable character of this bound reduces the question of whether
f0 ∈ (f1, . . . , fn) for given fj ∈ F [X ] to solving an (enormous) system of linear
equations over F . Hence, in this way one obtains a (naive) algorithm for solving
the ideal membership problem for F [X ] (provided F is given in some explicitly
computable manner). Later, Buchberger in his Ph.D. thesis (1965) introduced the
important concept of a Gröbner basis and gave an algorithm for deciding ideal
membership for F [X ] which is widely used today (see, e.g., [6]).

The doubly exponential nature of β above is essentially unavoidable, as a family
of examples due to Mayr and Meyer [27] shows. In fact, they prove that ideal
membership for Q[X ] is exponential-space hard: the amount of space needed by
any algorithm to decide ideal membership for Q[X ] (or Z[X ]) grows exponentially
in the size of the input. If we restrict to f0, . . . , fn of a special form, often dramatic
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improvements are possible: for example, if f0 = 1 (the situation of Hilbert’s Null-
stellensatz), then in the theorem we may replace the doubly exponential (2d)2N by
the single exponential bound dN if d > 2 (due to Kollár [22]) and by 2N+1 if d = 2
(due to Sombra [38]). A number of results show the existence of single-exponential
bounds in the (general) ideal membership problem for F [X ], under suitable geomet-
ric assumptions on the ideal I = (f1, . . . , fn): for example if I is zero-dimensional
or a complete intersection [7]. Membership in an unmixed ideal I can be decided
in single-exponential time [10].

In this paper, we study the ideal membership problem over coefficient rings of
an arithmetic nature, like the ring of integers Z (instead of over a field F ). The
following example shows that contrary to what happens over fields, if a bound d
on the degree of f0, f1, . . . , fn ∈ Z[X ] is given and f0 ∈ (f1, . . . , fn)Z[X ], then
there is no uniform bound on the degrees of gj’s such that f0 = g1f1 + · · ·+ gnfn,
which depends only on N and d. So any bound on the degree of the g1, . . . , gn as a
function of f0, f1, . . . , fn will necessarily also have to depend on the coefficients of
the polynomials fj .

Example. Let p > 1 and d ≥ 1 be integers. We have 1 ∈ (1−pX, pdX)Z[X ], since

1 =
(
1 + pX + · · ·+ pd−1Xd−1

)
(1− pX) +Xd−1pdX,

with the degrees of 1+pX+· · ·+pd−1Xd−1 and Xd−1 tending to infinity, as d→∞.
Considering everything mod pd, we see that 1− pX is a unit in (Z/pdZ)[X ]; indeed

1 ≡
(
1 + pX + · · ·+ pd−1Xd−1

)
(1 − pX) mod pd.

Hence if 1 ≡ g(X)(1 − pX) mod pd for some g(X) ∈ Z[X ], then necessarily g ≡
1 + pX + · · ·+ pd−1Xd−1 mod pd. It follows that if

1 = g(X)(1− pX) + h(X)pdX with g, h ∈ Z[X ],

then deg g, deg h ≥ d−1. Taking for p a prime number and replacing Z by its local-
ization Z(p), the same example works if we consider polynomials with coefficients
in Z(p).

A decision procedure for the ideal membership problem for polynomial rings over
Z has been known at least since the early 1970s; see, e.g., [4], [5], [12], [21], [32],
[36], [37]. However, these results did not yield the existence of a primitive recursive
algorithm, for any fixed N ≥ 3, let alone the existence of bounds similar to the ones
in Hermann’s theorem for polynomial rings over fields. Indeed, it was suspected by
some that this was one of the rare cases where a natural decision problem allows
an algorithmic solution, but not a primitive recursive one. (See [2] for a survey of
the history and the various proposals for computing in Z[X ].)

Finding a decision procedure for ideal membership in Z[X ] was central to Kro-
necker’s ideology of constructive mathematics [11]. In fact, one may argue that
he was primarily interested in what we would call today a primitive recursive al-
gorithm. Thus, the task of finding a primitive recursive decision method for ideal
membership in Z[X ] has aptly been called “Kronecker’s problem” in [13]. In this
paper, Gallo and Mishra adapted Buchberger’s algorithm for the construction of
Gröbner bases and deduced a primitive recursive procedure to decide the ideal
membership problem for Z[X ], when the number of variables N is fixed. Analyzing
their algorithm, they obtained the following bounds:
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IDEAL MEMBERSHIP IN POLYNOMIAL RINGS OVER THE INTEGERS 409

Theorem. Let f0, . . . , fn ∈ Z[X ] = Z[X1, . . . , XN ]. If f0 ∈ (f1, . . . , fn), then

f0 = g1f1 + · · ·+ gnfn

for certain polynomials g1, . . . , gn ∈ Z[X ] whose size |gj | is bounded by

W4N+8

(
|f0|+ · · ·+ |fn|+N

)
.

Here the size |f | of a polynomial f ∈ Z[X ] is a crude measure of its complexity
and equals the maximum of the absolute values of the coefficients and the degrees
of f with respect to each indeterminate; see [13, p. 346]. The function Wk is the
kth function in the so-called Wainer hierarchy of primitive recursive functions; see
[39]. Even for small k, these functions are already very rapidly growing: We have
W0(n) = n+ 1, W1(n) = 2n+ 1, but W2 grows asymptotically like the exponential
n 7→ 2n, W3 like the n-times iterated exponential function, and so on. These bounds
are only primitive recursive for each fixed N ; the growth rate of this bound as a
function of N is similar to the notorious Ackermann function.

Gallo and Mishra’s analysis of the complexity of their algorithm ultimately rests
on an effective version of Hilbert’s Basis Theorem for increasing chains of monomial
ideals in Z[X ]. This approach is doomed to fail in providing bounds which are also
primitive recursive for varying N : In general, even the length of an increasing chain
of ideals in Z[X ] with the kth ideal in the chain generated by monomials of degree at
most kd can have a growth behavior similar to Ackermann’s function, as a function
of N and d. (See [28].)

In the present paper, we will give a proof of the following theorem. Given a
polynomial f ∈ Z[X ], we let h(f) be the height of f , that is, the maximum of
log |a| where a ranges over the non-zero coefficients of f , with h(0) := 0.

Theorem A. If f0, f1, . . . , fn ∈ Z[X ] = Z[X1, . . . , XN ] are polynomials with f0 ∈
(f1, . . . , fn), whose degrees are at most d and whose heights are at most h, then

f0 = g1f1 + · · ·+ gnfn

for certain polynomials g1, . . . , gn ∈ Z[X ] of degrees at most

γ(N, d, h) = (2d)2O(N log(N+1))
(h+ 1).

In principle, the (universal) constant hidden in the O-notation can be made
explicit; see Section 6 below. The bound γ on the degrees of the gj’s implies the
existence of a similar (doubly exponential) bound on the heights of the gj. As a
consequence, we obtain a naive elementary recursive decision procedure for ideal
membership in Z[X ]. In this paper we prove in fact a generalization of Theorem A
with Z replaced by the ring of integers of a number field F , using an appropriate
notion of height for elements of F .

The starting point for our proof of Theorem A is the simple observation that
one can localize the question of whether f0 ∈ (f1, . . . , fn) and reduce it to finitely
many subproblems in the following way: Using the classical method of Hermann
(for F = Q), one can test whether f0 ∈ (f1, . . . , fn)Q[X ], and assuming this is so,
we obtain, by clearing denominators, a representation

(1) δf0 = g1f1 + · · ·+ gnfn with δ ∈ Z, δ 6= 0, g1, . . . , gn ∈ Z[X ].

Let p1, . . . , pK be the different prime factors of δ. Then another necessary condition
for f0 ∈ (f1, . . . , fn), besides f0 ∈ (f1, . . . , fn)Q[X ], is that f0 ∈ (f1, . . . , fn)Z(pk)[X ]
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for k = 1, . . . ,K. Together with (1), these necessary conditions are also sufficient
for f0 ∈ (f1, . . . , fn): If f0 ∈ (f1, . . . , fn)Z(pk)[X ], then

(2) δkf0 = g1kf1 + · · ·+ gnkfn for some δk ∈ Z \ pkZ and gjk ∈ Z[X ].

Since δ, δ1, . . . , δK have no common prime factor, we find, by the Euclidean Algo-
rithm, a linear combination of them that equals 1:

(3) aδ + a1δ1 + · · ·+ aKδK = 1 (a, a1, . . . , aK ∈ Z).

Combining (1), (2) and (3), we get

f0 =
(
aδ + a1δ1 + · · ·+ aKδK

)
f0 =

n∑
j=1

(
agj + a1gj1 + · · ·+ aKgjK

)
fj ,

which exhibits f0 as an element of (f1, . . . , fn).
Now note that given a prime p, we have f0 ∈ (f1, . . . , fn)Z(p)[X ] if and only if

the homogeneous linear equation

(4) f1y1 + · · ·+ fnyn − f0yn+1 = 0

in the unknowns y1, . . . , yn+1 has a solution (y1, . . . , yn+1) ∈
(
Z(p)[X ]

)n+1 with
yn+1 = 1. This reduces the problem of deciding whether f0 ∈ (f1, . . . , fn)Z(p)[X ]
to the following two subproblems:

(a) constructing a collection of generators z(1), . . . , z(L) ∈
(
Z(p)[X ]

)n+1 for the
module of solutions (in Z(p)[X ]) to equation (4), and

(b) deciding whether the ideal in Z(p)[X ] generated by the last components of
the vectors z(1), . . . , z(L) contains 1.

Problem (b) can be easily treated by applying the effective Nullstellensatz for Q[X ]
and Fp[X ] (or Hermann’s Theorem). By a faithful flatness argument, it is possible
to further reduce problem (a) to the construction of a set of generators for the
Q[X ]-module of solutions to (4) in Q[X ] and a set of generators S ⊆

(
Z(p)[X ]

)n+1

for the Zp〈X〉-module of solutions to (4) in Zp〈X〉. Here, Zp〈X〉 denotes the ring
of restricted power series with p-adic integer coefficients (see [8] or Section 2). The
great advantage of the power series rings Zp〈X〉 over polynomial rings over Z (or
over Z(p)) is that they satisfy a Weierstraß Division and Preparation Theorem.
Hermann’s method for deciding ideal membership, that is, deciding solvability of
a single inhomogeneous linear equation, has a variant which allows for the con-
struction of a finite set of generators for the Q[X ]-module of solutions to the linear
homogeneous equation (4) in Q[X ]. The key step in our argument is to adapt this
method to explicitly construct the set S from above, that is, to show the effective
flatness of Zp〈X〉 as a Z(p)[X ]-module. All computations take place in Z(p)[X ],
and bounds for the heights of the polynomials occurring in each step can be found.
This enables us to calculate the bound γ.

Theorem A naturally generalizes to systems of linear equations over polynomial
rings, and as the sketch above already indicates, one also obtains information on
homogeneous systems of linear equations. For example, the methods developed
here lead to the following theorem on degree bounds for generators of syzygies:

Theorem B. The Z[X ]-module of solutions (y1, . . . , yn) ∈
(
Z[X ]

)n of the equation

f1y1 + · · ·+ fnyn = 0,
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IDEAL MEMBERSHIP IN POLYNOMIAL RINGS OVER THE INTEGERS 411

where f1, . . . , fn ∈ Z[X ] = Z[X1, . . . , XN ] are of degree ≤ d, is generated by solu-
tions

y(1), . . . , y(K) ∈
(
Z[X ]

)n
whose entries are of degree at most (2d)2O(N log(N+1))

.

Note that this bound does not depend on the coefficients of the fj’s. (The
number K of required generators also depends only on N,n and d.) Theorem B
holds in a rather more general context, for any almost hereditary ring in place of
Z. See Section 4 below for the definition of almost hereditary rings and [1] for
uniform degree bounds on syzygies for an even larger class of rings. The size of the
coefficients of the entries of y(k) can be similarly estimated, by a bound that also
depends on the heights of f1, . . . , fn.

Organization of the paper. We begin (in Section 1) by recalling basic definitions
about absolute values on number fields, defining a height function on the algebraic
closure of Q, and establishing some auxiliary facts about it used later. In Section 2
we state some fundamental facts about the ring of restricted power series over a
complete discrete valuation ring. Section 3 contains an exposition of Hermann’s
method for solving systems of linear equations in polynomial rings over fields. This
is the basis for Section 4, where we give a proof of Theorem B modeled on this
method. We also indicate two applications concerning bounds for some operations
on finitely generated modules and a criterion for primeness of ideals in Z[X ] in the
style of [34]. In Section 5 we complement Theorem B for rings of integers in number
fields by establishing bounds on the height of generators for syzygy modules. In
Section 6 we use these results to prove Theorem A.

Notation and conventions. Throughout this paper N = {0, 1, 2, . . .} denotes
the set of natural numbers.

Let R be a ring (here and below: always commutative with a unit element). The
localization S−1R, where S denotes the set of non-zero-divisors of R, is called the
ring of fractions of R, denoted by Frac(R). If A is an m× n-matrix with entries in
R, the set of solutions in Rn to the homogeneous system of linear equations Ay = 0
is an R-submodule of Rn, which we denote by SolR(A). It is sometimes called the
(first) module of syzygies of A. If R is coherent (e.g., if R is Noetherian), then
SolR(A) is finitely generated. For submodules M , M ′ of an R-module L we write

(M ′ : M) :=
{
a ∈ R : am ∈M ′ for all m ∈M

}
,

which is an ideal of R (containing the annihilator of M). If δ ∈ R, then

(M : δ) :=
{
m ∈ L : δm ∈M

}
,

which is a submodule of L. If L = Rm is a finitely generated free module and
R → R′ a ring homomorphism, then MR′ denotes the R′-submodule of (R′)m

generated by the image of M .
By X = (X1, . . . , XN ) we always denote a tuple of N distinct indeterminates,

where N ∈ N. The (total) degree of a polynomial 0 6= f ∈ R[X ] = R[X1, . . . , XN ]
is denoted by deg(f), and the degree of f in Xi (where i ∈ {1, . . . , N}) is denoted
by degXi(f). By convention deg(0) := −∞ and degXi(0) := −∞, where −∞ < N.
We extend this notation to finite tuples f = (f1, . . . , fn) of polynomials in R[X ] by
setting deg(f) := maxj deg(fj) (the degree of f). Similarly we define degXi(f).
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The notions of computable field and computable ring are used in an informal way.
We will say that a computable ring R is syzygy-solvable if there is an algorithm
which, given a1, . . . , an ∈ R, constructs a finite set of generators for the solutions
to the homogeneous linear equation a1y1 + · · ·+ anyn = 0. (This is called “finitely
related” in [32].) For example, the prime fields Q and Fp are clearly syzygy-solvable,
as is Z, or more generally the ring of integers of any number field (see [9]).

1. Absolute values and height functions

We assume that the reader is familiar with the basic theory of absolute values on
number fields as expounded in, say, [25, Chapter II], and the (absolute, logarithmic)
height function on the algebraic closure of Q as used in diophantine geometry (see
[24, Chapter 3]). We recall some definitions and a few basic facts used later.

Absolute values. We let | · | denote the usual (Euclidean) absolute value | · | on
Q, and for a prime number p we let | · |p denote the p-adic absolute value on Q:
|a|v = p−vp(a) for a ∈ Q×, where vp : Q× → Z denotes the p-adic valuation on Q.
Let F be an algebraic number field of degree d = [F : Q], and let R = OF be the
ring of integers of F . If v is a finite place of F which lies over the prime number p,
we write v|p. If v is an infinite place of F , we write v|∞. To every place v of F we
associate an absolute value | · |v on F , normalized so that

(1) if v|p for a prime p, then | · |v extends the p-adic absolute value | · |p on Q,
(2) if v|∞, then | · |v extends the usual absolute value | · | on Q.

For every place v of F we let Fv denote the completion of F with respect to the
topology induced by | · |v and Qv ⊆ Fv the completion of Q with respect to the
topology induced by the restriction of | · |v to Q. We put dv = [Fv : Qv]. If v|p
is finite, then Qp is the field of p-adic numbers. If v|∞, then Qv = R, and either
Fv = R and dv = 1 (in which case v is called real) or Fv = C and dv = 2 (v is
complex). Given w =∞ or w = p for a prime p, we have

d =
∑
v|w

dv,

where the sum ranges over all places v of F with v|w. We let MF denote the set
of all places of F , M∞F := {v ∈ MF : v|∞} the set of infinite places, and M0

F :=
MF \M∞F the set of finite places of F . We put ||a||v := |a|dvv for v ∈ MF . With
this normalization, the number field F satisfies the following product formula:

(1.1)
∏
v∈MF

||a||v = 1 (a ∈ F×).

The assignment v 7→ pv :=
{
r ∈ R : |r|v < 1

}
establishes a one-to-one correspon-

dence between M0
F and the set of non-zero prime ideals of R. If v|p is a finite place

of F and p = pv, then the absolute value | · |v on F associated to v and the p-adic
valuation on F are connected as follows:

|a|v = p−vp(a)/ev for all a ∈ F×.

Here ev denotes the ramification index of v, that is, the unique integer such that
p = πevu for some unit u of Rp and some π ∈ Rp with vp(π) = 1. We have ev|dv;
in fact, #(R/p) = pdv/ev .
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Divisors. An MF -divisor is a function c : MF → R such that
(1) c(v) > 0 for all v ∈MF ;
(2) c(v) = 1 for all but finitely many v ∈MF ;
(3) for each v ∈M0

F there exists an element a ∈ F with c(v) = |a|v.
We shall sometimes write |c|v instead of c(v), and we put ||c||v := |c|dvv . We define
the size of an MF -divisor c to be

||c||F :=
∏
v

||c||v.

The product c · d of two MF -divisors c and d is an MF -divisor, and ||c · d||F =
||c||F · ||d||F . Given an MF -divisor c, we let

L(c) :=
{
a ∈ F : |a|v ≤ c(v) for all v ∈MF

}
,

a finite set. Each non-zero fractional ideal I of F (i.e., a finitely generated R-
submodule of F ) determines a unique MF -divisor cI such that

L(cI) =
{
a ∈ I : |a|v ≤ 1 for all v ∈M∞F

}
.

We have c(v) = 1 for all v ∈M∞F and

cI(vp) = p−vp(I)/evp

for all primes p 6= 0 of R. Here I =
∏

p
pvp(I) is the unique representation of I as a

product of non-zero prime ideals of R, with

vp(I) = min
{
vp(a) : a ∈ I

}
∈ Z

and vp(I) = 0 for almost all p. We have ||cI ||F = 1/N(I), where

N(I) =
∏
p

#(R/p)vp(I)

denotes the norm of I. If I ⊆ R, then N(I) = #(R/I).

Local heights. Given a place v ∈MF and a non-empty finite set S ⊆ F , we put

|S|v := max
{
|a|v : a ∈ S

}
, ||S||v := |S|dvv .

We define the (logarithmic) local height hv(S) of S at v by

hv(S) := log+ ||S||v.
Here log+ r := max

{
0, log r

}
for r ∈ R>0 and log+ 0 := 0. We declare hv(∅) := 0.

For a polynomial f ∈ F [X ] we put ||f ||v := ||S||v, where S is the set of coefficients
of f . The local height of f at v ∈MF is defined by

hv(f) := log+ ||f ||v.
More generally, for f1, . . . , fn ∈ F [X ] we put

hv(f1, . . . , fn) := log+ ||S||v,
where S is the set of coefficients of f1, . . . , fn. Note hv(f1, . . . , fn) ≥ 0. Here are
some other basic properties of hv, immediate from the definition:

Lemma 1.1. Let v ∈MF and a, a1, . . . , an ∈ F . Then
(1) hv(a) = hv(−a);
(2) hv(ak) = k · hv(a) for k ∈ N;
(3) hv(a1 + · · ·+ an) ≤ hv(a1, . . . , an) + logn if v ∈M∞F ;
(4) hv(a1 + · · ·+ an) ≤ hv(a1, . . . , an) if v ∈M0

F ;
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(5) hv(a1 · · · an) ≤ hv(a1) + · · ·+ hv(an).

From (1) and (3)–(5) in the lemma we obtain:

Corollary 1.2. If A(1), . . . , A(m) are n× n-matrices with entries in F , then
(1) hv

(
detA(1), . . . ,detA(m)

)
≤ n ·

(
hv
(
A(1), . . . , A(m)

)
+ logn

)
if v ∈M∞F ;

(2) hv
(
detA(1), . . . ,detA(m)

)
≤ n · hv

(
A(1), . . . , A(m)

)
if v ∈M0

F .

(Using Hadamard’s inequality, it is possible to improve the term logn in (1)
slightly, to 1

2 logn.)

Global height. The (global) height of a finite set S ⊆ F is defined in terms of the
local heights:

h(S) :=
1
d

∑
v∈MF

hv(S).

The (global) height of f1, . . . , fn ∈ F [X ] is the global height of its set of coefficients.
The quantity h(S) does not change if the field F is replaced by another algebraic
number field containing the set S. Hence h gives rise to a height function, also
denoted by h, on (finite subsets of) the algebraic closure of Q. The product formula
(1.1) implies that h(a) = h(1/a) for all a ∈ F×.

We have h(S′) ≤ h(S) for all subsets S′ ⊆ S; hence h(a) ≤ h(S) for a ∈ S.
Suppose that S 6= {0}, and let I denote the fractional ideal generated by S. Then

h(S) =
1
d

logN(d) +
∑

v∈M∞F

hv(S)

 ,

where I = b/d is a factorization of I with b, d relatively prime ideals of R. In
particular, for 0 6= a ∈ R we get

(1.2) h(a) = h(1/a) =
1
d

logN(a) +
∑

v∈M∞F

hv(1/a)

 .

Moreover, if S ⊆ R, then

h(S) =
1
d

∑
v∈M∞F

hv(S).

It follows that in this case h(S) ≤ d ·max
{
h(a) : a ∈ S

}
.

Example. For non-zero and relatively prime integers r, s ∈ Z we have h(r/s) =
max

{
log |r|, log |s|

}
. In particular h(r) = log |r| for 0 6= r ∈ Z.

From Lemma 1.1 we get the following rules for estimating the behavior of h with
respect to the elementary operations of F :

h(a) = h(−a),(1.3)

h(ak) = |k|h(a) for all k ∈ Z,(1.4)

h(a1 + · · ·+ an) ≤ h(a1, . . . , an) + logn,(1.5)

h(a1 · · · an) ≤ h(a1) + · · ·+ h(an).(1.6)

From Corollary 1.2 we obtain the following bound on the height of determinants of
n× n-matrices A(1), . . . , A(m) ∈ Fn×n:

(1.7) h
(
detA(1), . . . ,detA(m)

)
≤ n ·

(
h
(
A(1), . . . , A(m)

)
+ logn

)
.
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The following facts will also be used later on:

Lemma 1.3. For all a ∈ F×,∑
v∈M0

F ,vp(a)>0

log p · vp(a) ≤ d · h(a).

Here the sum runs over all v ∈ M0
F such that vp(a) > 0, with p = pv denoting the

prime ideal of R corresponding to v and p the unique prime number such that v|p.

Proof. We have (using (1.4))

d · h(a) = d · h(1/a) ≥
∑
v∈M0

F

dv/ev · log p ·max
{

0, vp(a)
}
≥

∑
v∈M0

F ,vp(a)>0

log p · vp(a)

as claimed. �
It follows that given a non-zero element a of R there are at most d · h(a)/ log 2

many absolute values v ∈ M0
F such that vp(a) > 0, where p = pv. Moreover

|vp(a)| ≤ d · h(a)/ log p for all v ∈M0
F , where v|p.

Lemma 1.4. There exists a constant C0, depending only on F , with the following
property: Given ideals I and J of R with I properly contained in J , there exists
a ∈ J \ I of height at most C0 +

(
1 + 1

d

)
logN(I).

Proof. By [25, Chapter V, §2, Theorem 1], we have, for every MF -divisor c:

#L(c) = BF ||c||F +O
(
||c||1−1/d

F

)
as ||c||F →∞,

where BF = 2d1 (2π)d2

|D(F )|1/2 . Here d1 and d2 denote the number of real and complex places
of F , respectively, and D(F ) denotes the discriminant of F . That is, there exists
a positive real number C (only depending on F ) such that for every MF -divisor c

with ||c||F ≥ C

(1.8)
∣∣#L(c)−BF ||c||F

∣∣ ≤ C · ||c||1−1/d
F .

We may assume that C ≥
(
BF
2

) d
d−1 ; hence (C′)d ≥ C for C′ := 2C

BF
. Let t :=

C′ · N(I)1+ 1
d and let d be the MF -divisor given by d(v) = 1 if v ∈ M0

F and
d(v) = t if v ∈ M∞F . We consider the MF -divisors c = cI · d and c′ = cJ · d of size
||c||F = td/N(I) and ||c′||F = td/N(J), respectively. We have ||c||F ≥ C; hence
(1.8) implies ∣∣#L(c)−BF ||c||F

∣∣ ≤ C · td−1N(I)1/d−1,

and similarly with c replaced by c′. Since I is properly contained in J , we have
N(I) > N(J) and L(c) ⊆ L(c′). If L(c) = L(c′), then

BF t
d

(
1

N(J)
− 1
N(I)

)
=
∣∣BF ||c||F −BF ||c′||F ∣∣ ≤ 2C · td−1N(I)1/d−1

and hence

t ≤ C′N(I)1/d−1

(
N(I)N(J)
N(I)−N(J)

)
< C′ ·N(I)1+ 1

d ,

a contradiction. Therefore L(c′) \ L(c) 6= ∅, that is, there exists a ∈ J \ I with
|a|v ≤ t for all v ∈M∞F . It follows that

h(a) =
1
d

∑
v∈M∞F

dv log+|a|v ≤ log+ t ≤ C0 +
(

1 +
1
d

)
logN(I)
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where C0 = logC′ is a constant only depending on the number field F . �

Given any fractional ideal I 6= {0} of F and a non-zero prime ideal p of R, there
exists an element b of

I−1 = {a ∈ F : aI ⊆ R}
such that vp(b) = −vp(I). In Section 4 we will need the existence of such b having
small height, for integral I:

Corollary 1.5. There exists a constant C1, depending only on F , with the following
property: Given an ideal I = (a1, . . . , an) of R and a non-zero prime ideal p of R
with vp(I) > 0, there exists an element b of I−1 such that vp(b) = −vp(I) and

h(b) ≤ C1

(
h(a1, . . . , an) + 1

)
.

Proof. Let C0 > 0 be the constant from Lemma 1.4, and put C1 := C0 + d+ 2. Let
i ∈ {1, . . . , n} be such that vp(ai) = vp(I), and put J := (ai) · I−1, an ideal of R.
By Lemma 1.4 there exists a ∈ J \ J · p with h(a) ≤ C0 +

(
d+1
d

)
logN(J · p), and

by (1.2)
1
d

logN(J · p) ≤ 1
d

logN(ai) ≤ h(ai).

Hence the element b = a/ai ∈ I−1 satisfies

h(b) ≤ h(a) + h(ai) ≤ C0 +
(

1 +
1
d

)
logN(J · p) + h(ai) ≤ C0 + (d+ 2)h(ai)

and has the required properties. �

Remarks.
(1) For F = Q the constant C1 = 1 has the property claimed in the corollary:

Given integers a1, . . . , an ∈ Z and a prime number p, let b = p−µ, where
µ = mini vp(ai). Then ba1, . . . , ban ∈ Z and h(b) = log pµ ≤ h(a1, . . . , an).

(2) If the number field F is explicitly given, say in terms of its multiplication
table for a Z-basis ω1, . . . , ωd of R, and the generators a1, . . . , an are also
explicitly given (in terms of their coefficients in the basis ω1, . . . , ωd), then
b ∈ I−1 with vp(b) = −vp(I) can be found effectively: By [9, pp. 202–205]
we can compute a basis b1, . . . , bm for the R-module I−1; then b = bi, where
vp(bi) is minimal, has the required property. (Perhaps, using [33], one could
also obtain a more explicit constant C1 in this way.)

2. Rings of restricted power series

Let O be a discrete valuation ring (DVR) with maximal ideal m = tO. We write
vm : O \ {0} → N for the m-adic valuation associated to O (normalized so that
vm(t) = 1). We always consider vm extended to a map vm : O → N∞ by vm(0) :=∞,
where N∞ = N∪ {∞} with the usual conventions N <∞ and r+∞ =∞+ r =∞
for all r ∈ N∞. The residue field of O is denoted by O = O/m, with residue
homomorphism a 7→ a : O → O.

From now until further notice we assume that O is complete in the m-adic
topology on O. The completion of the polynomial ring O[X ] = O[X1, . . . , XN ]
with respect to the mO[X ]-adic topology on O[X ] will be denoted by O〈X〉 =
O〈X1, . . . , XN 〉. It may be regarded as a subring of the ring O[[X ]] of formal power
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series over O, and it is called the ring of restricted power series with coefficients
in O. Its elements are the power series

f =
∑
ν

aνX
ν ∈ O[[X ]] (aν ∈ O for all ν)

such that aν → 0 (in the m-adic topology on O) as |ν| → ∞. Here ν = (ν1, . . . , νN )
ranges over all multi-indices in NN , and |ν| = ν1 + · · ·+ νN .

The m-adic valuation vm : O → N∞ extends to O〈X〉 by setting

vm(f) = min
ν
vm(aν) for f =

∑
ν

aνX
ν ∈ O〈X〉.

The map vm : O〈X〉 → N∞ is a valuation on the domain O〈X〉, that is, for all
f, g ∈ O〈X〉 we have vm(fg) = vm(f) + vm(g) and vm(f + g) ≥ min

{
vm(f), vm(g)

}
.

(See [8, p. 44, Corollary 2].) We denote the image of f ∈ O〈X〉 under the canonical
surjection O〈X〉 → O〈X〉/tO〈X〉 ∼= O[X ] by f .

Suppose from now on that N ≥ 1, and let X ′ := (X1, . . . , XN−1). Canonically
O〈X ′〉 ⊆ O〈X〉, and every element f ∈ O〈X〉 can be written uniquely as

(2.1) f =
∞∑
i=0

fiX
i
N with fi(X ′) ∈ O〈X ′〉 for all i ∈ N,

where the infinite sum converges with respect to the mO〈X〉-adic topology onO〈X〉.
An element f of O〈X〉, expressed as in (2.1), is called regular in XN of degree
s ∈ N if its reduction f ∈ O[X ] is unit-monic of degree s in XN , that is,

(1) fs 6= 0, and
(2) vm(fi) > 0 for all i > s.

If f ∈ O〈X ′〉[XN ] is monic of XN -degree s (so that in particular f is regular in XN

of degree s, as an element of O〈X〉), then f is called a Weierstraß polynomial
in XN of degree s. For a proof of the following standard facts see, e.g., [8].

Lemma 2.1. (Noether normalization) Let R be a domain, e > 1, and let f ∈
R[X1, . . . , XN ] = R[X ], f 6= 0, be of total degree < e. Then the R-automorphism
Te : R[X ]→ R[X ] given by

Xi 7→ Xi +XeN−i

N (for 1 ≤ i < N),
XN 7→ XN

has the property that for some s < eN and non-zero u ∈ R
Te(f) = uXs

N + terms of lower degree.

Applying this to R = O, one concludes:

Lemma 2.2. Let e > 1 and suppose that the image of f ∈ O〈X〉 in O[X ] is
non-zero of degree < e. Let Te : O〈X〉 → O〈X〉 be the O-automorphism defined by

Xi 7→ Xi +XeN−i

N (for 1 ≤ i < N),
XN 7→ XN .

Then Te(f) is regular in XN of degree < eN .

The ring of restricted power series has the following fundamental property:
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Theorem 2.3. (Weierstraß Division Theorem for O〈X〉) Let g ∈ O〈X〉 be regular
in XN of degree s. Then for each f ∈ O〈X〉 there are uniquely determined elements
q ∈ O〈X〉 and r ∈ O〈X ′〉[XN ] with degXN r < s such that f = qg + r.

In particular, we get

O〈X〉/(g) ∼= O〈X ′〉 ⊕ O〈X ′〉XN ⊕ · · · ⊕ O〈X ′〉XN
s−1

as O〈X ′〉-algebras. (Here XN = XN mod g.) Applying Weierstraß Division with
f = Xs

N , we obtain the important corollary:

Corollary 2.4. (Weierstraß Preparation Theorem for O〈X〉) Let g ∈ O〈X〉 be reg-
ular in XN of degree s. There are a unique Weierstraß polynomial w ∈ O〈X ′〉[XN ]
of degree s and a unique unit u ∈ O〈X〉 such that g = u · w.

From Weierstraß Preparation it follows that the ring O〈X〉 is Noetherian. Here
is another useful consequence:

Corollary 2.5. Let w ∈ O〈X ′〉[XN ] be a Weierstraß polynomial. Then the inclu-
sion map O〈X ′〉[XN ] ⊆ O〈X〉 induces an isomorphism

O〈X ′〉[XN ]/wO〈X ′〉[XN ]
∼=−→ O〈X〉/wO〈X〉.

Proof. The surjectivity of the map follows from the existence part of Weierstraß
Division. For injectivity, we have to show: if fw = g ∈ O〈X ′〉[XN ] for some
f ∈ O〈X〉, then f ∈ O〈X ′〉[XN ]. This follows by Euclidean Division of g by
the monic polynomial w in O〈X ′〉[XN ] and by the uniqueness statement in the
Weierstraß Division Theorem. �

Now let O be an arbitrary DVR, not necessarily complete, with maximal ideal
generated by t, and let Ô be the completion of O in the m-adic topology. We let
F = Frac(O) be the fraction field of O. The following lemma and its corollary
below will become important in later sections.

Lemma 2.6. If a (finite) system of linear equations over O[X ] has a solution in
F [X ] and in Ô〈X〉, then it has a solution in O[X ].

Proof. For simplicity, we just treat the case of a single linear equation

(2.2) f0 = f1y1 + · · ·+ fnyn (f0, f1, . . . , fn ∈ O[X ]).

The general case is similar. From a solution in F [X ] we obtain, after clearing
denominators, an integer e ≥ 1 and polynomials g1, . . . , gn ∈ O[X ] such that

(2.3) tef0 = f1g1 + · · ·+ fngn.

Now Ô〈X〉 is faithfully flat over its subring (Se)−1O[X ], where Se is the multiplica-
tive set 1 + teO[X ]. (See [17, Theorems 4.9, 5.1].) So if (2.2) is solvable in Ô〈X〉,
then there exist h, h1, . . . , hn ∈ O[X ] with

(2.4) (1 + teh)f0 = f1h1 + · · ·+ fnhn.

Multiplying (2.3) on both sides by h and subtracting from (2.4), we obtain

f0 = f1(h1 − hg1) + · · ·+ fn(hn − hgn)

with h1 − hg1, . . . , hn − hgn ∈ O[X ] as desired. �

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



IDEAL MEMBERSHIP IN POLYNOMIAL RINGS OVER THE INTEGERS 419

Corollary 2.7. Let A be an m× n-matrix over O[X ]. If

y(1), . . . , y(L) ∈
(
O[X ]

)n
generate the F [X ]-module SolF [X](A) of solutions of the homogeneous system of
linear equations Ay = 0 in F [X ] and

z(1), . . . , z(M) ∈
(
O[X ]

)n
generate the Ô〈X〉-module SolÔ〈X〉(A) of solutions of Ay = 0 in Ô〈X〉, then

y(1), . . . , y(L), z(1), . . . , z(M)

generate the O[X ]-module SolO[X](A) of solutions of Ay = 0 in O[X ]. �

3. Hermann’s method

In this section, we first give a presentation of Hermann’s method for construct-
ing generators for the solutions of systems of homogeneous linear equations over
polynomial rings. We begin by adapting this approach so that it applies to systems
of linear equations over any integral domain D. In the next section we will use a
variant of Hermann’s method in the case where D = O〈X〉 for a complete DVR O.
Here we present the case (treated by Hermann) where D is a polynomial ring over
a field and deduce bounds on the degrees of generators for syzygy modules. Finally
we show how this method can be modified to solve inhomogeneous systems.

Hermann’s method in a general setting. Let D be an integral domain with
fraction field K. (Typically, D is a ring of polynomials over an integral domain.)
We consider a homogeneous system of linear equations

(I)

a11 · · · a1n

...
. . .

...
am1 · · · amn


y1

...
yn

 =

0
...
0


with coefficient matrix A = (aij)1≤i≤m

1≤j≤n
having entries aij ∈ D. We are interested in

effectively finding a set of generators for the module of syzygies Sol(A) = SolD(A)
of A. Of course, for this we may assume A 6= 0. We shall indicate here a reduction
of this problem to a similar problem over a coefficient ring (a quotient of D) that
is in many cases simpler than the domain D.

Let r = rankK(A) ≥ 1 be the rank of A (considered as a matrix over K) and let
∆ be an r × r-submatrix of A with δ = det ∆ 6= 0. After rearranging the order of
the equations and permuting the unknowns y1, . . . , yn in (I), we may assume that
∆ is the upper left corner of A, i.e., ∆ = (aij)1≤i,j≤r . Each row ai = (ai1, . . . , ain)
with r < i ≤ m is a K-linear combination of the first r rows a1, . . . , ar, so (I) has
the same solutions in Dn as the system

(II)

a11 · · · a1n

...
. . .

...
ar1 · · · arn


y1

...
yn

 =

0
...
0


Changing the notation, we let r = m and A = (aij)1≤i≤r

1≤j≤n
. So (II) can now be

written as Ay = 0. Multiplying both sides of Ay = 0 on the left by the adjoint of

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



420 MATTHIAS ASCHENBRENNER

∆, (II) turns into the system

(S)


δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n
. . .

...
. . .

...
δ cr,r+1 · · · crn



y1

y2

...
yn

 =


0
0
...
0


with cij , di ∈ D for 1 ≤ i ≤ r < j ≤ n, which has the same solutions in Dn as (II)
and as (I). We note the following n− r linearly independent solutions of (S):

(3.1) v(1) =



−c1,r+1

...
−cr,r+1

δ
0
...
0


, v(2) =



−c1,r+2

...
−cr,r+2

0
δ
...
0


, . . . , v(n−r) =



−c1,n
...

−cr,n
0
...
0
δ


If δ is a unit, these vectors form in fact a basis for Sol(A). Suppose δ is not a unit,
so D = D/δD 6= 0. Then, reducing the coefficients in (S) modulo δ, the system (S)
turns into the system

(S)

c1,r+1 · · · c1n
...

. . .
...

cr,r+1 · · · crn


yr+1

...
yn

 =

0
...
0


over D. (Here a denotes the image of a ∈ D in D.)

Lemma 3.1. Let z(1), . . . , z(M) ∈ Dn−r be such that z(1), . . . , z(M) ∈ Dn−r
gener-

ate the D-module of solutions to (S). The vectors z(1), . . . , z(M) may be extended
uniquely to vectors y(1), . . . , y(M) in Dn which, together with the solutions of (I) in
(3.1), generate Sol(A).

This fact is rather obvious, but what makes it useful is that under favorable
circumstances D is “simpler” than D. (Note however that it may happen that D is
not a domain anymore.) Let us consider an example where this can be exploited.

Hermann’s method for F [X ]. Assume that D is a polynomial ring over a field
F , that is, D = F [X ] = F [X1, . . . , XN ]. Let N > 0. Suppose first that F is infinite.
In this case, after a linear change of variables, we may assume that

(3.2) δ = uXe
N + terms of lower XN -degree, with e = deg δ > 0, u ∈ F×.

Then by Euclidean Division each element a ∈ D can be uniquely written as

a = a0 + a1XN + a2XN
2

+ · · ·+ ae−1XN
e−1

with a0, . . . , ae−1 ∈ F [X ′] = F [X1, . . . , XN−1]. In particular, each coefficient cij in
(S) can be written in this way. Note that degX′ ai ≤ degX a for all 0 ≤ i < e. Let
us also write each unknown yj in (S), for r < j ≤ n, as

yj = yj0 + yj1XN + · · ·+ yj,e−1XN
e−1
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with new unknowns yjk (r < j ≤ n, 0 ≤ k < e) ranging over D′ = F [X ′]. Each
product cijyj in (S) can then be written as

β0(yj0, . . . , yj,e−1) + β1(yj0, . . . , yj,e−1)XN + · · ·+ βe−1(yj0, . . . , yj,e−1)XN
e−1

,

where each βk is a linear form in yj0, . . . , yj,e−1 with coefficients in D′. From
this, it is routine to construct a homogeneous system of r(e − 1) linear equations
in the e(n − r) unknowns yjk over D′ whose solutions in D′ are in one-to-one
correspondence with the solutions of (S) in D.

Computing degree bounds. For the sake of obtaining “good” bounds on the
degrees of solutions, we modify the general construction sketched above, exploiting
some more special features of F [X ]. Put d = degXN A. Write each aij as

(3.3) aij = aij0 + aij1XN + · · ·+ aijdX
d
N

with aijk ∈ F [X ′] and also each unknown yj as

(3.4) yj = yj0 + yj1XN + · · ·+ yj,rd−1X
rd−1
N

with new unknowns yjk ranging over F [X ′]. Then the ith equation in (II) yields
(r + 1)d equations

k∑
l=0

n∑
j=1

aijlyj,k−l = 0, 0 ≤ k < (r + 1)d,

where we put aijl := 0 for l > d and yi,l := 0 for l ≥ rd . In this way, we obtain a
new system

(I′) A′y′ = 0,

where A′ is an
(
rd(r + 1)

)
× (nrd)-matrix with entries in D′ and

(3.5) y′ =
[
y1,0, . . . , y1,rd−1, . . . , yn,0, . . . , yn,rd−1

]tr
,

whose solutions in D′ are in one-to-one correspondence with the solutions of (II) in
D of XN -degree < rd. Note that the entries of A′ are still of degree (in X ′) at most
degX A. If N > 1, then we can repeat the same procedure with (I′) instead of (I),
etc., until we obtain a (huge) homogeneous system of linear equations over F . We
can (effectively) find a finite set of generators for the F -vector space of solutions to
this system, and reversing the process above, we obtain a finite set of generators for
the original system (I): Suppose we have already found a finite set of generators for
the D′-submodule SolD′(A′) of (D′)nrd, where A′ is the matrix constructed from A

as above. That is, we have finitely many solutions y(1), . . . , y(M ′) of (I) such that
each solution to (I) of XN -degree < rd is a linear combination of y(1), . . . , y(M ′).
The solutions in (3.1) together with y(1), . . . , y(M ′) form a set of generators for
Sol(A) = SolD(A): Given any solution y = [y1, . . . , yn]tr ∈ Sol(A), we can divide
each yj , j = n− r + 1, . . . , n, by δ:

yj = Qj−rδ +Rj−r (j = n− r + 1, . . . , n)

with Q1, . . . , Qn−r ∈ F [X ] and R1, . . . , Rn−r ∈ F [X ] of XN -degree < e. Then

z = y −Q1v
(1) − · · · −Qn−rv(n−r) =

[
h1, . . . , hr, R1, . . . , Rn−r

]tr
is also a solution to (S), with h1, . . . , hr ∈ F [X ]. Now

δhi = −(ci,r+1R1 + · · ·+ cinRn−r) for i = 1, . . . , r,
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where the right-hand sides have XN -degree < rd + e. Hence degXN h < rd and
therefore degXN z < rd. It follows that z is aD-linear combination of y(1), . . . , y(M ′),
so y is a D-linear combination of y(1), . . . , y(M ′), v(1), . . . , v(n−r) as claimed.

Let α = α(N, d,m) be the smallest natural number such that for all infinite fields
F , a system ofm homogeneous linear equations (I) overD = F [X ] = F [X1, . . . , XN ]
with all deg aij bounded from above by d is generated by the solutions of degree≤ α.
(By the considerations above, α(N, d,m) exists.) The derived system (I′) consists
of at most dm(m + 1) equations in at most dn2 unknowns, and degX′(A

′) ≤ d.
From a set of generators of the solutions to (I′) of degree ≤ d′ we can produce a
set of generators of the solutions to (I) of degree ≤ d′ +md. We get the relation

α(N, d,m) ≤ α
(
N − 1, d, dm(m+ 1)

)
+md

for N > 0. Noting that α(0, d,m) = 0 for all d, m, we find that

α(N, d,m) ≤ (m+ 1)d+
(
(m+ 1)d

)2 + · · ·+
(
(m+ 1)d

)2N−1

≤ (2md)2N .

If F is any field, possibly finite, we work over F ′ = F (T ), an infinite field. Here,
T is an indeterminate distinct from X1, . . . , XN . Given y ∈

(
F [T,X ])n, write

y = y(0) + y(1)T + y(2)T 2 + · · · (a finite sum) with y(k) ∈
(
F [X ]

)n for all k. If
G is a generating set for SolF ′[X](A) consisting of elements of

(
F [T,X ]

)n, then the
collection of y(k), where y ∈ G and k ∈ N, generates SolF [X](A). To sum up, we
have shown the classical result:

Theorem 3.2. (Hermann [20], Seidenberg [35]) For every polynomial ring D =
F [X1, . . . , XN ] over a field F and A ∈ Dm×n of degree at most d, the solution
module SolD(A) of the homogeneous system Ay = 0 is generated by the solutions of
degree at most β(N, d,m) = (2md)2N . �

Hermann’s method for inhomogeneous systems. Again let D be a domain
with fraction field K. Given an m × n-matrix A = (aij) with entries aij ∈ D, we
are now interested in determining for each column vector b = [b1, . . . , bm]tr ∈ Dm

whether the system

(Ib)

a11 · · · a1n

...
. . .

...
am1 · · · amn


y1

...
yn

 =

 b1...
bm


(or Ay = b) is solvable for some y = [y1, . . . , yn]tr ∈ Dn, and if it is, effectively find-
ing such a solution. Similarly to the case of homogeneous equations, this problem
can be reduced to an analogous problem over a quotient of D: As above let ∆ be
an r × r-submatrix of A with δ = det ∆ 6= 0, where r = rankK(A) ≥ 1. Again we
may assume that ∆ = (aij)1≤i,j≤r. Each row ai = (ai1, . . . , ain) with r < i ≤ m is
a K-linear combination

ai =
r∑
%=1

λi%a% (λi% ∈ K)

of the first r rows a1, . . . , ar. So a necessary condition for (Ib) to have a solution in
Dn is that

(NC) bi =
r∑
%=1

λi%b% for r < i ≤ m.
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(That is, rankK(A) = rankK(A, b).) Assume (NC) holds. Then (Ib) has the same
solutions in Dn as the system

(IIb)

a11 · · · a1n

...
. . .

...
ar1 · · · arn


y1

...
yn

 =

b1...
br


Changing the notation, we let r = m, so (IIb) can now be written as Ay = b.
Multiplying both sides of Ay = b on the left by the adjoint ∆ad of ∆, (IIb) turns
into the system

(Sb)


δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n
. . .

...
. . .

...
δ cr,r+1 · · · crn



y1

y2

...
yn

 =


d1

d2

...
dr


(with cij , di ∈ D for 1 ≤ i ≤ r < j ≤ n) which has the same solutions in Dn

as (IIb) and as (Ib). Clearly, a sufficient condition for (Sb) to have a solution
y = [y1, . . . , yn]tr ∈ Dn is that d1, . . . , dr are each divisible by δ. This will be the
case if δ is a unit. A solution to (Sb) (and hence to (Ib)) is then given by

yj =

{
dj/δ for 1 ≤ j ≤ r,
0 for d < j ≤ n.

Suppose δ is not a unit, so D = D/δD 6= 0. Then, reducing the coefficients in (Sb)
modulo δ, the system (Sb) turns into

(Sb)

c1,r+1 · · · c1n
...

. . .
...

cr,r+1 · · · crn


yr+1

...
yn

 =

d1

...
dr


over D. The key fact here is the following (similar to Lemma 3.1):

Lemma 3.3. Any [yr+1, . . . , yn]tr ∈ Dn−r with the property that
[
yr+1, . . . , yn

]tr
is a solution of the reduced system (Sb) can be augmented uniquely to a solution

y =
[
y1, . . . , yr, yr+1, . . . , yn

]tr ∈ Dn

of (Sb) and hence of (Ib). (In particular, (Ib) is solvable in D if and only if (Sb) is
solvable in D.)

In the case where D = F [X ] is a polynomial ring over a field F , we can again
modify this reduction somewhat to facilitate the computation of bounds. Suppose
that N > 0 and F is infinite. Then, after applying a linear change of variables, we
may assume that δ has the form (3.2). By Euclidean Division we write each bi as

bi = δfi + gi with fi, gi ∈ D, degXN gi < e.

The solutions of (IIb) in Dn are in one-to-one correspondence with the solutions in
Dn of the system

(IIIb)

a11 · · · a1n

...
. . .

...
ar1 · · · arn


y1

...
yn

 =

g1

...
gr


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with the same coefficient matrix A as (IIb). To see this, let

f =

[
f1

...
fr

]
, g =

[ g1

...
gr

]
, and h =

∆adf
0
...
0

 ∈ Dn.

Note that b = δf + g and Ah = δf ; so y ∈ Dn is a solution to (IIb) if and only
if y − h ∈ Dn is a solution to (IIIb). Moreover, if all aij and bi have degree ≤ d,
and if (IIb) is solvable in Dn, then (IIIb) even has a solution in Dn of XN -degree
< rd. In order to prove this, suppose y = [y1, . . . , yn]tr ∈ Dn is a solution to
(IIb). The polynomial δ, each cij and each di have degree at most rd. Subtracting
from y appropriate multiples of the solutions v(1), . . . , v(n−r) (see (3.1)) to the
homogeneous system Ay = 0 associated with (IIb), if necessary, we may assume
that degXN yj < e ≤ rd for j = r+ 1, . . . , n. Multiplying the equation A(y−h) = g

on both sides from the left by the adjoint ∆ad of ∆, we get, for j = 1, . . . , r:

δ(yj − hj) =
n∑

k=r+1

ykcjk + (terms of XN -degree < e+ rd).

It follows that degXN
(
δ(yj −hj)

)
< e+ rd and thus degXN (yj −hj) < rd. So y−h

is a solution to (IIIb) of XN -degree < rd as required.
Write each gi as

gi = gi0 + gi1XN + · · ·+ gi,e−1X
e−1
N

with gi0, . . . , gi,e−1 ∈ F [X ′], each aij in the form (3.3), and also each unknown yj
as in (3.4). Comparing the coefficients of equal powers of XN on both sides, the
ith equation in (IIIb) yields (r + 1)d equations

k∑
l=0

n∑
j=1

aijlyj,k−l = gik, 0 ≤ k < (r + 1)d,

with aijl := 0 for l > d, yi,l := 0 for l ≥ rd, gil := 0 for l ≥ e. We get a new system

(I′b) A′y′ = b′,

where A′ is an
(
rd(r + 1)

)
× (nrd)-matrix with entries in D′, b′ is an

(
rd(r + 1)

)
-

column vector with components from D′, and y′ is as in (3.5), whose solutions in
D′ are in one-to-one correspondence with the solutions of (IIIb) in D of XN -degree
< rd. So starting with a system (I) over D = F [X1, . . . , XN ], we have constructed
a system (I′b) over D′ = F [X1, . . . , XN−1] which is, assuming (NC), in some sense
equivalent to it. Note that degX′(A′, b′) ≤ d.

Associated to (I′b) we have the necessary condition

(NC′) rankK′(A′) = rankK′(A′, b′) (where K ′ = Frac(D′))

for its solvability in D′. So if N > 1 and (NC′) holds, then we can repeat the
procedure with (I′b), until we obtain a system of linear equations over K. We can
(effectively) decide whether this system has a solution over K, and if it does, find
one, e.g., by Gaussian Elimination. Eventually we obtain a solution y ∈ Dn of the
original system (Ib) with deg y ≤ β(N, d,m) = (2md)2N , where d = deg(A, b).

If F is a finite field, we again work over the infinite field F ′ = F (T ). The
algorithm described above allows us to test whether the system (Ib) has a solution
y′ = [y′1, . . . , y′n]tr ∈

(
F ′[X ]

)n, and if it does, to effectively obtain such a solution
with degX y

′ ≤ β(N, d,m). Since the coefficients of the y′j solve a certain system of
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linear equations involving the coefficients of the aij and the bi, we can also find a
solution y in F [X ] with the deg y majorized by the same bound. This shows:

Theorem 3.4. (Hermann [20], Seidenberg [35]) For every polynomial ring D =
F [X1, . . . , XN ] over a field F and A ∈ Dm×n, b ∈ Dm of degree at most d, if the
system of linear equations Ay = b has a solution in Dn, then it has such a solution
of degree at most (2md)2N . �

Remark. Theorems 3.2 and 3.4 above remain true for a polynomial ring D =
F [X1, . . . , XN ] over a von Neumann regular ring F . This follows easily from the
fact that any von Neumann regular ring admits a faithfully flat embedding into a
direct product of fields.

Given a Noetherian domain R with fraction field F and an ideal I of R[X ], there
exists δ ∈ R such that IF [X ] ∩R[X ] = (I : δ). More generally, we have:

Corollary 3.5. Let R be a domain with fraction field F = Frac(R), let R[X ] =
R[X1, . . . , XN ], and let M be a finitely generated submodule of the free R[X ]-module
R[X ]m. Then there exists δ ∈ R with the property that for every domain R′ ex-
tending R with fraction field F ′:

(3.6) MF ′[X ] ∩R′[X ]m = (MR′[X ] : δ).

If R is computable, then δ can be computed elementary recursively (in the ring
operations of R) from a given finite collection of generators for M .

Note that M has the form

M =
{
b ∈ Dm : Ay = b has a solution in Dn

}
for some matrix A of size m× n (for some n) with coefficients in D, and

MS[X ] =
{
b ∈ S[X ]m : Ay = b has a solution in S[X ]n

}
for every ring S extending R. The corollary follows by a slight modification of
Hermann’s method as described in the proof of Theorem 3.4 above. The difference
is that we now apply Lemma 2.1 instead of a linear change of variables to bring
the chosen minor of A in the form (3.2). (This works regardless of F being infinite
or not.) Note that then (using the notation introduced earlier) the only arithmetic
operations performed in constructing (A′, b′) from (A, b) are additions, subtractions,
multiplications, and divisions by the leading coefficient u of δ. (The latter occur in
the Euclidean Division by δ.) But u itself arises as a polynomial in the coefficients
of the entries of A only. We leave the details to the reader. From Corollary 3.5
and the proof Theorem 3.2 we obtain:

Corollary 3.6. Let R be a domain, F = Frac(R), and let A be an m × n-matrix
with entries in D = R[X ] = R[X1, . . . , XN ]. There exist generators u(1), . . . , u(K) ∈
SolD(A) of SolF [X](A) and δ ∈ R such that

SolD(A) = (M : δ), where M = Du(1) + · · ·+Du(K).

If R is computable, then the u(k) and δ can be computed elementary recursively (in
the ring operations of R) from A. �
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4. Effective flatness

The purpose of this section is to prove Theorem B from the introduction, in a
more general setting. A ring R is called hereditary if every ideal of R is projective
(as an R-module). A domain R is hereditary if and only if R is a Dedekind domain
([16, p. 27]). A domain R is called almost Dedekind if every localization Rm

of R at a maximal ideal m of R is a DVR. (See [15, p. 434].) Somewhat more
generally, we shall call a ring R almost hereditary if the ring of fractions Frac(R)
of R is von Neumann regular and Rm is a DVR for every maximal ideal m of R.
Every hereditary ring is almost hereditary ([16, pp. 27–28]). There exist examples
of domains which are almost Dedekind but not Dedekind; see [15, pp. 516–518].
With this terminology, we have:

Theorem 4.1. Let R be an almost hereditary ring and let A = (aij) ∈ Dm×n,
A 6= 0, where D = R[X1, . . . , XN ]. The module of solutions to Ay = 0 in D is
generated by elements of degree at most (2m degA)2((N+1)N−1).

Since an almost hereditary ring is semihereditary and hence coherent (see [16,
p. 128]), finitely many such generators will suffice. Theorem 4.1 specializes to
Theorem B when applied to R = Z and m = 1.

As a first step in the proof of this theorem, we show an easy local-global result:

Lemma 4.2. Let R be a ring and let M be an R[X ]-submodule of R[X ]n. For
each maximal ideal m of R let v(1)

m , . . . , v
(Km)
m ∈ M generate the Rm[X ]-submodule

MRm[X ] of Rm[X ]n. Then v
(1)
m , . . . , v

(Km)
m , where m ranges over all maximal ideals

of R, generate the R[X ]-module M .

Proof. Let y ∈M . Then for each maximal ideal m of R there exist δm ∈ R \m and
b1,m, . . . , bKm,m ∈ R[X ] such that

(4.1) δmy = bm,1v
(1)
m + · · ·+ bm,Km

v
(Km)
m .

The various δm, where m ranges over all maximal ideals of R, generate the unit
ideal of R. Hence there exist maximal ideals m1, . . . ,mk of R (for some k ∈ N) and
c1, . . . , ck ∈ R such that

1 = c1δm1 + · · ·+ ckδmk .

Therefore
y = c1(δm1y) + · · ·+ ck(δmky).

Together with (4.1) this shows that y is an R[X ]-linear combination of the v(j)
m . �

Remark. Let M ′ be a submodule of M generated by u(1), . . . , u(K), and let δ be an
element of the ideal (M ′ : M) of R. Similarly to the proof of the lemma one shows
that u(1), . . . , u(K) together with v

(1)
m , . . . , v

(Km)
m , where m ranges over all maximal

ideals of R containing δ, suffice to generate M . Below we will apply this in the
situation where u(1), . . . , u(K) ∈M are generators of the F [X ]-module MF [X ] and
δ satisfies MF [X ] ∩ R[X ]n = (M ′ : δ). (Here F = Frac(R) denotes the ring of
fractions of R.)

Now let R be an almost hereditary ring and 0 6= A = (aij) ∈ Dm×n, where
D = R[X ], X = (X1, . . . , XN). Then F = Frac(R) is von Neumann regular, and
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Rm is a DVR, for every maximal ideal m of R. By virtue of the lemma applied to
M = SolD(A), it suffices to find

v
(1)
m , . . . , v

(Km)
m ∈ SolD(A)

generating MRm[X ] = SolRm[X](A), for each maximal ideal m of R, with v
(j)
m of

“small” degree. For the construction of the v(j)
m we may use Corollary 2.7, since

Rm is a DVR. Hence, given a maximal ideal m of R, we need to find

(1) y(1)
m , . . . , y

(Lm)
m ∈ SolRm[X](A) generating SolFrac(Rm)[X](A) and

(2) z(1)
m , . . . , z

(Mm)
m ∈ SolRm[X](A) generating Sol

R̂m〈X〉(A),

with y(i)
m and z(j)

m of degree at most (2m degA)2((N+1)N−1). By Hermann’s Theorem
3.2 from the last section we obtain y

(i)
m satisfying (1), of degree bounded by

(2m degA)2N ≤ (2m degA)2((N+1)N−1) (for N > 0).

The existence of the z(j)
m is a consequence of the following effective flatness result

applied to the DVR O = Rm:

Proposition 4.3. Let O be a DVR with maximal ideal m and m-adic completion
Ô, and let A = (aij) ∈

(
O[X ]

)m×n, A 6= 0. There exist solutions z(1), . . . , z(M) ∈
SolO[X](A) of degree at most (2m degA)2((N+1)N−1) which generate SolÔ〈X〉(A).

In proving this proposition, we proceed by induction on N , following Hermann’s
method as in the proof of Theorem 3.2, with F [X ] replaced by Ô〈X〉 and Weierstraß
Division for Ô〈X〉 in place of Euclidean Division for F [X ]. However, this procedure
breaks down if δ mod t = 0 for all r×r-minors δ of A, since then Weierstraß Division
by δ is inapplicable. To overcome this obstacle, we shall first transform our system

(I)

a11 · · · a1n

...
. . .

...
am1 · · · amn


y1

...
yn

 =

0
...
0


into an equivalent system for which δ mod t 6= 0 for a suitable r× r-minor δ of the
new coefficient matrix. For this, by removing superfluous rows from A, we may of
course assume that the rows of A are linearly independent over the fraction field
F (X) of O[X ], i.e., m = r = rankF (X)(A) ≥ 1. Let ∆ be an r × r-submatrix of A
such that vm(det ∆) is minimal among all r × r-submatrices of A. Without loss of
generality, ∆ = (aij)1≤i,j≤r . As in Section 3, consider now the system

(S)


δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n
. . .

...
. . .

...
δ cr,r+1 · · · crn



y1

y2

...
yn

 =


0
0
...
0


which is obtained by multiplying both sides of (I) from the left with the adjoint of
∆. It has the same solutions as (I) in any domain extending O[X ]. Here, δ = det ∆,
and the cij are certain signed r × r-minors of A. In particular, vm(cij) ≥ vm(δ) for
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all i, j, by choice of ∆. We have the n− r linearly independent solutions

(4.2) v(1) =



−c1,r+1

...
−cr,r+1

δ
0
...
0


, v(2) =



−c1,r+2

...
−cr,r+2

0
δ
...
0


, . . . , v(n−r) =



−c1,n
...

−cr,n
0
...
0
δ


to the homogeneous system (S). Put µ = vm(δ) and u(k) = t−µv(k) ∈

(
O[X ]

)n for
k = 1, . . . , n−r. If N = 0, then t−µδ is a unit in O, so the solutions u(1), . . . , u(n−r)

form a basis of SolO(A) and hence of SolÔ(A) (since Ô is flat over O). Suppose
now that N > 0. We let e = r degA + 1 and put bij = Te(aij), where Te is the
Ô-automorphism of Ô〈X〉 defined in Lemma 2.2. Then the system By = 0, where
B = (bij) ∈

(
O[X ]

)m×n, has the same rank r as (I), and y ∈ Ô〈X〉n is a solution
to (I) if and only if Te(y) is a solution to By = 0. Dividing all coefficients δ and cij
in (S) by tµ and applying Te to the resulting system, we obtain a system

(Se)


ε d1,r+1 · · · d1,n

ε d2,r+1 · · · d2,n

. . .
...

. . .
...

ε dr,r+1 · · · drn



y1

y2

...
yn

 =


0
0
...
0


which has the same solutions, in any domain extending O[X ], as By = 0, where
dij ∈ O[X ] for all i, j and ε ∈ O[X ] is regular in XN of some degree s < eN .
This system has the n − r linearly independent solutions w(1), . . . , w(n−r), where
w(k) = Te

(
u(k)

)
for k = 1, . . . , n − r. Let d = degXB B, so d < eN . (Note that

degX′(bij) ≤ degX′(aij) for all i, j.) Write

bij = bij0 + bij1XN + · · ·+ bijdX
d
N

with bij0, . . . , bijd ∈ O[X ′] and each unknown yj as

yj = yj0 + yj1XN + · · ·+ yj,rd−1X
rd−1
N

with new unknowns yjk (1 ≤ j ≤ n, 0 ≤ k < rd) ranging over Ô〈X ′〉. The ith
equation in By = 0 may then be written as

k∑
l=0

n∑
j=1

bijlyj,k−l = 0, 0 ≤ k < (r + 1)d,

where we put bijl := 0 for l > d and yi,l := 0 for l ≥ rd. This gives rise to a system
over O[X ′]:

(4.3) A′y′ = 0,

consisting of rd(r + 1) homogeneous equations in the nrd unknowns y′ = (yjk),
whose solutions in Ô〈X ′〉 are in one-to-one correspondence with the solutions y ∈(
Ô〈X ′〉[XN ]

)n to By = 0 with degXN y < rd. From a finite set of generators of
SolO[X′](A′) we thus obtain finitely many column vectors

y(1), . . . , y(M ′) ∈
(
O[X ]

)n
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with the following property: each y(i) is a solution to By = 0 of XN -degree <
rd, and each solution y ∈

(
Ô〈X ′〉[XN ]

)n to this system of linear equations with
degXN y < rd is an Ô〈X ′〉-linear combination of y(1), . . . , y(M ′). Consider now the
solutions

(4.4) u(1), . . . , u(n−r), T−1
e

(
y(1)

)
, . . . , T−1

e

(
y(M ′)

)
∈
(
O[X ]

)n
to (I). We show:

Lemma 4.4. The vectors in (4.4) generate the Ô〈X〉-module SolÔ〈X〉(A).

Proof. Suppose that x ∈
(
Ô〈X〉

)n is any solution to Ay = 0, and let y = Te(x),
a solution to By = 0. Since ε is regular in XN of degree s, we can write, by
Weierstraß Division in Ô〈X〉:

yj = Qj−rε+Rj−r (j = n− r + 1, . . . , n)

with Q1, . . . , Qn−r ∈ Ô〈X〉 and R1, . . . , Rn−r ∈ Ô〈X ′〉[XN ] of XN -degree < s.
Then

z = y −Q1w
(1) − · · · −Qn−rw(n−r) =

[
h1, . . . , hr, R1, . . . , Rn−r

]tr
is also a solution to (Se), with h1, . . . , hr ∈ Ô〈X〉. Let U ∈ Ô〈X〉 be a unit
and W ∈ Ô〈X ′〉[XN ] be a Weierstraß polynomial such that ε = UW . Since ε is
polynomial in XN , by Corollary 2.5 we also have U ∈ Ô〈X ′〉[XN ]. The degree of ε
in XN is ≤ rd, and the degree of W in XN is s; hence U is of degree ≤ rd − s in
XN . Moreover,

(4.5) W (Uhi) = εhi = −(di,r+1R1 + · · ·+ dinRn−r) ∈ Ô〈X ′〉[XN ]

for i = 1, . . . , r. Since W is monic in XN , it follows that Uhi ∈ Ô〈X ′〉[XN ]. Put
z = Uz′ ∈

(
Ô〈X ′〉[XN ]

)n, a solution to (Se). We claim that all entries of z have
XN -degree < rd: To see this, note that degXN Ri < s for i = 1, . . . , n − r and
degXN U ≤ d − s; hence the last n − r entries UR1, . . . , URn−r of z are of XN -
degree < rd. For the first r entries Uh1, . . . , Uhr use that the right-hand side of
(4.5) has XN -degree < rd + s; since degXN W = s, we get degXN Uhi < rd for
all i = 1, . . . , r. It follows that z′, and hence z, is an Ô〈X〉-linear combination of
y(1), . . . , y(K′). Since U is a unit in Ô〈X〉, the solution y can be expressed as an
Ô〈X〉-linear combination of the column vectors

w(1), . . . , w(n−r), y(1), . . . , y(M ′) ∈
(
O[X ]

)n
.

Hence the solution x = T−1
e (y) to our original equation (I) is an Ô〈X〉-linear

combination of the vectors in (4.4) as claimed. �

Remark. We can bound the degrees of the solutions in (4.4): We have deg u(k) ≤
r degA for k = 1, . . . , n − r and degX′ T−1

e

(
y(i)
)
≤ degX′ y(i) for i = 1, . . . ,M ′.

Moreover degXN y
(l) < rd < reN and thus

degXN T
−1
e

(
y(i)
)
≤ eN−1 deg y(i) ≤ eN−1

(
degX′ y

(i) + reN
)

for i = 1, . . . ,M ′.
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Starting with (I) we successively obtain equivalent homogeneous matrix equa-
tions

A(N)y(N) = 0(HN )
...

A(ν)y(ν) = 0(Hν)
...

A(0)y(0) = 0,(H0)

where 0 ≤ ν ≤ N , A(ν) is an m(ν) × n(ν)-matrix with entries in the polynomial
ring O[X1, . . . , Xν ] and

y(ν) =
[
y

(ν)
1 , . . . , y

(ν)
n(ν)

]tr
is a vector of unknowns ranging over Ô〈X1, . . . , Xν〉. So the initial equation (HN )
is just Ay = 0, and if ν > 0, then the system (Hν−1) is obtained from (Hν) by the
procedure described above (passage from A to A′). We have

m(ν) ≤ m(ν + 1)
(
m(ν + 1) + 1

)
e(ν + 1)ν

for all ν = 0, . . . , N − 1, where e(ν) = m(ν) degA(ν) + 1. It follows that

e(ν) ≤ m(ν + 1)
(
m(ν + 1) + 1

)
e(ν + 1)ν degA(ν) + 1.

Using that degA(ν) ≤ degA, we get the estimate

(4.6) e(ν) ≤ (m degA+ 1)(N+1)N−ν

for all ν = 0, . . . , N . Let B(0) ⊆ On(0) be a finite system of generators of SolO(A(0)),
and for every ν = 1, . . . , N let B(ν) ⊆ O[X1, . . . , Xν ]n(ν) be a system of generators
for the module of solutions to (Hν) in Ô〈X1, . . . , Xν〉, with B(ν) constructed from
B(ν − 1) according to the process described above. For ν = 0, . . . , N let γ(ν) be
the maximal degree of an element of B(ν). Clearly γ(0) = 0, and by the remark
following Lemma 4.4 we have

γ(ν) ≤ e(ν)ν−1
(
γ(ν − 1) +m(ν)e(ν)ν

)
+ γ(ν − 1).

The right-hand side can be further estimated from above by

e(ν)ν−1
(
2γ(ν − 1) +m(ν)e(ν)ν

)
≤ e(ν)2ν−1

(
γ(ν − 1) +m(ν)

)
.

Hence we get
γ(ν) + 1 ≤ e(ν)2ν

(
γ(ν − 1) + 1

)
for all ν = 1, . . . , N . It follows that

γ(N) + 1 ≤ e(N)2Ne(N − 1)2(N−1) · · · e(1)2,

and hence, using (4.6):
γ(N) ≤

(
m degA+ 1

)%
where % = 2

∑N−1
i=0 (N + 1)i(N − i). It is easy to see that % ≤ 2

(
(N + 1)N − 1

)
.

Hence every element of B(N) has degree ≤ (2m degA)2((N+1)N−1), finishing the
proof of Proposition 4.3 and thus of Theorem 4.1. �
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Remark 4.5. As a consequence of Theorem 4.1, if R is an almost Dedekind domain
that is syzygy-solvable, then there exists an (impractical) algorithm which, given an
m×n-matrixA with entries in D = R[X ], constructs a finite collection of generators
for SolD(A). If R = Z, or more generally, a computable principal ideal domain,
we can also turn the proof of the theorem into such an algorithm: We first find
generators u(1), . . . , u(K) ∈ M := SolD(A) for SolF [X](A) = MF [X ], where F =
Frac(R), and δ ∈ R such that SolD(A) = (M ′ : δ) where M ′ = Du(1) + · · ·+Du(K).
(See Corollary 3.6.) We may assume A 6= 0; hence δ 6= 0. For every prime factor π
of δ we now follow the inductive procedure outlined in the proof of Proposition 4.3
to construct generators v(1)

π , . . . , v
(Kπ)
π ∈ SolD(A) for Sol

R̂(π)〈X〉(A). By the remark

following Lemma 4.2, the solutions u(1), . . . , u(K) together with the v(1)
π , . . . , v

(Kπ)
π

(with π ranging over the prime factors of δ) generate SolD(A) = MF [X ] ∩Dn.

Sometimes Theorem 4.1 still holds for rings which are not almost hereditary:

Corollary 4.6. Let R be an integrally closed almost Dedekind domain, and let S
be the integral closure of R inside an algebraic closure of the fraction field F of R.
Let A be an m× n-matrix with entries in S[X ] = S[X1, . . . , XN ]. Then SolS[X](A)
is generated by elements of degree at most (2m degA)2((N+1)N−1).

Proof. Let F ′ be a finite field extension of F containing all the coefficients of the
entries of A, and let R′ be the integral closure of R in F ′. Then R′ is almost
Dedekind. (See [15, (36.1)].) Since R′ is a Prüfer domain and S a torsion-free
R′-module, S is flat over R′. The claim now follows from Theorem 4.1. �

The corollary applies to R = Z (so S = the ring of all algebraic integers).

Application 1: Bounds for module-theoretic operations. Let R be an al-
most Dedekind domain with fraction field F = Frac(R). We can exploit Theo-
rem 4.1 to establish bounds for some basic operations on finitely generated sub-
modules of free modules over D = R[X ] = R[X1, . . . , XN ]. We say that a finitely
generated D-submodule of Dm is of type d (where d ∈ N) if it is generated by
vectors of degree at most d.

Proposition 4.7. Let M and M ′ be finitely generated submodules of the free D-
module Dm of type d. Then the D-modules (M : δ) (where δ ∈ R), MF [X ] ∩Dm

and M ∩M ′ as well as the ideal (M ′ : M) are of type τ(N, d,m) = (2md)(N+1)O(N)
.

Proof. Let M = Dv(1) + · · ·+Dv(n) and M ′ = Dw(1) + · · ·+Dw(p) with v(i), w(j) ∈
Dm of degree at most d. To find generators for the D-module (M : δ), we first find
a finite set of generators z(1), . . . , z(K) ∈ Dn+m for the D-module of solutions to
the system of homogeneous equations

v(1)y1 + · · ·+ v(n)yn + (−δe(1))yn+1 + · · ·+ (−δe(m))yn+m = 0.

Here e(1), . . . , e(m) denote the unit vectors in Dm. Then clearly the K vectors
consisting of the last m entries of z(1), . . . , z(K) generate (M : δ). By Theorem 4.1
(M : δ) is of type τ(N, d,m). Using Corollary 3.5, this implies that MF [X ] ∩Dm

is also of type τ(N, d,m).
In order to find generators for M ∩ M ′, it suffices to find generators for the

D-module of solutions to the system of homogeneous equations

v(1)y1 + · · ·+ v(n)yn = w(1)yn+1 + · · ·+ w(p)yn+p.
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Moreover we have

(M ′ : M) = (M ′ : Dv(1)) ∩ · · · ∩ (M ′ : Dv(n)),

and if u(1), . . . , u(q) ∈ Dm generate M ′ ∩Dv, where v = [v1, . . . , vm]tr ∈ Dm, then

(M ′ : Dv) =
m⋂
j=1

(
u

(1)
j /vj , . . . , u

(q)
j /vj

)
.

Here a/0 := 1 for all a ∈ R. From this, one easily obtains the bounds on the type
of M ∩M ′ and (M ′ : M) as claimed. �
Remarks.

(1) If R is syzygy-solvable, then generators for the D-modules MF [X ] ∩ Dm

and M ∩ M ′ and for the ideal (M ′ : M) can be computed elementary
recursively (in the basic operations of R) from given generators for M and
M ′. This follows from the proof of the proposition and Remark 4.5 above.

(2) By Corollary 4.6, the proposition remains true if R is replaced by the ring
of algebraic integers.

Application 2: A criterion for primeness. The following lemma is well known;
we leave the proof to the reader.

Lemma 4.8. Let R be a ring and let I be an ideal of R[X ]. Then I is prime if
and only if the image of I in (R/I ∩ R)[X ] is prime. If R is an integral domain
with fraction field F and I ∩R = (0), then I is prime if and only if IF [X ] is prime
and IF [X ] ∩R[X ] = I.

As a consequence, we obtain a test for primeness of an ideal in Z[X ]. Let
I = (f1, . . . , fn) with f1, . . . , fn ∈ Z[X ] and δ ∈ Z such that IQ[X ]∩Z[X ] = (I : δ).

Corollary 4.9. The ideal I = (f1, . . . , fn) is prime if and only if one of the fol-
lowing holds:

(1) IQ[X ] is prime and (I : δ) = I, or
(2) there exists a prime factor p of δ such that p ∈ I and the image of I in

Fp[X ] is a prime ideal.

Combining Corollary 4.9 with Proposition 4.7 and a result from [34], we get a
criterion for the primeness of an ideal of Z[X ] which is polynomial in the degrees
of the generators:

Proposition 4.10. There exists % = %(N) ∈ N such that for each ideal I of Z[X ] of
type d, the following is true: I is prime if and only if 1 /∈ I, and for all f, g ∈ Z[X ]
of degree ≤ d%, if fg ∈ I, then f ∈ I or g ∈ I.

Proof. By Proposition 4.7, for all ideals I of Z[X ] of type d, the ideal IQ[X ]∩Z[X ]
of Z[X ] is of type τ(N, d) = (2d)(N+1)O(N)

. Moreover by [34] there exists %′ =
%′(N) ∈ N such that for each field F and each ideal J of F [X ] of type d, we have:
J is prime if and only if 1 /∈ J , and for all f, g ∈ F [X ] of degree ≤ d%

′
, if fg ∈ J ,

then f ∈ J or g ∈ J . We claim that % with d% ≥ max{τ, d%′} has the required
properties. For this, let I = (f1, . . . , fn) be an ideal of Z[X ] of type d, and let
δ ∈ Z with IQ[X ] ∩ Z[X ] = (I : δ). Suppose 1 /∈ I and fg ∈ I ⇒ f ∈ I or g ∈ I,
for all f, g ∈ Z[X ] of degree ≤ d%. Then either 1 ∈ IQ[X ] or IQ[X ] is prime, since
d% ≥ d%

′
. Similarly, if we have p ∈ I for some prime divisor p of δ, then the image
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of I in Fp[X ] is a prime ideal. In this case, it follows by Corollary 4.9 (2) that I is
prime. Otherwise, f ∈ I for all f ∈ Z[X ] of degree at most τ with δf ∈ I. Hence
1 /∈ IQ[X ] (so IQ[X ] is prime) and (I : δ) = I. By Corollary 4.9 (1) it follows that
also in this case I is prime as desired. �

It is clear that Corollary 4.9 and Proposition 4.10 hold, mutatis mutandis, for
any PID R with fraction field F in place of Z and Q, respectively.

5. Height bounds

Throughout this section we let F be a number field and R = OF the ring of
integers of F . Let A = (aij) be a non-zero m × n-matrix with entries aij in
D = R[X ] = R[X1, . . . , XN ]. Let d = degA and h = h(A). As was shown in
the previous section, we can explicitly bound the degrees of generators for the D-
module SolD(A) in terms of d, m and N . We now want to bound the heights of
those generators in a similar fashion (in terms of N , d, h, and m).

The local case. Let p 6= 0 be a prime ideal of R, and let O := Rp (a DVR). We
first investigate the height of generators for SolO[X](A) and begin with the case
N = 0:

Lemma 5.1. Suppose that aij ∈ R for all i, j, and let r = rankF (A). The O-
module SolO(A) of solutions in On to the system of homogeneous linear equations
Ay = 0 is generated by n− r many vectors whose height is bounded by

C2 · r(h+ log r + 1).

Here C2 is a constant only depending on F .

Proof. Let v ∈ MF denote the place of F associated with p, so p = pv. We may
assume that det ∆ 6= 0, where ∆ = (aij)1≤i,j≤r (after permuting the unknowns
in our system Ay = 0 if necessary). In fact, we may assume that the p-adic
valuation µ := vp(det ∆) of det ∆ is minimal among all r × r-submatrices of A; cf.
the proof of Proposition 4.3. Now Ay = 0 has the same solutions in any domain
extending O as the system (S) obtained from Ay = 0 by multiplying both sides
from the left with the adjoint of ∆ (see Section 3). The entries δ = det ∆ and cij
(1 ≤ i ≤ r < j ≤ n) of the coefficient matrix of (S) are certain signed r×r-minors of
A. Let v(1), . . . , v(n−r) be the n− r linearly independent solutions to Ay = 0 listed
in (3.1). By (1.7) we have h

(
v(k)

)
≤ r(h+ log r) for k = 1, . . . , n− r. Corollary 1.5

implies that there exists an element b of F such that vp(b) = −µ, bv(k) ∈ Rn for all
k = 1, . . . , n− r, and h(b) ≤ C1r(h + log r + 1). Here C1 > 0 is a constant which
only depends on F . The vectors bv(1), . . . , bv(n−r) ∈ Rn generate SolO(A) and are
bounded in height by C2r(h+ log r + 1), with C2 = 2C1. �

Remark. Note that the vectors v(1), . . . , v(n−r) ∈ SolR(A) as in the proof of the
lemma generate SolF (A) and satisfy h(v(k)) ≤ r(h + log r) for k = 1, . . . , n − r.
Moreover, the element 0 6= δ ∈ R of height h(δ) ≤ r(h + log r) has the property
that δy ∈ Rv(1) + · · ·+ Rv(n−r) for every y ∈ SolR(A).

We now consider the general caseN ≥ 0. By Proposition 4.3, the solution module
SolO[X](A) is generated by solutions y = [y1, . . . , yn]tr with y1, . . . , yn ∈ O[X ] of
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degree at most γ = γ(N, d,m) := (2md)2((N+1)N−1). Write

yj =
∑
|ν|≤γ

yj,νX
ν

with variables yj,ν ranging over O and

aij =
∑
|µ|≤d

aij,µX
µ

with aij,µ ∈ O, where 1 ≤ i ≤ m, 1 ≤ j ≤ n and ν, µ ∈ NN , |ν| ≤ γ, |µ| ≤ d.
A polynomial in X1, . . . , XN of degree at most d has at most M(N, d) =

(
N+d
N

)
monomials. Hence the solutions (in O[X ]) of every equation

ai1y1 + · · ·+ ainyn = 0 (1 ≤ i ≤ m)

are in one-to-one correspondence with the solutions (in O) of the system consisting
of the M(N, γ + d) homogeneous equations∑

j

∑
µ+ν=λ

aij,µyj,ν = 0 (|λ| ≤ γ + d)

in the n ·M(N, γ) many variables yj,ν , with coefficients in O. So the entire system
Ay = 0, with coefficients in O[X ], may be replaced by a certain homogeneous
system of m ·M(N, γ + d) equations in the variables yj,ν , having coefficients in O.
Applying the lemma above to the new system and using the estimate

m ·M(N, γ + d) ≤ m · (γ + d+ 1)N =
(
2m(d+ 1)

)(N+1)O(N)

,

we get the following result, with C2 as above.

Proposition 5.2. For any N ≥ 0, the O[X ]-module SolO[X](A) is generated by
solutions of degree at most (2md)(N+1)O(N)

and height at most

(5.1) C2 ·
(
2m(d+ 1)

)(N+1)O(N)

(h+ 1).

Here C2 is a constant only depending on F . �

With β = β(N,m, d) = (2md)2N we have

m ·M(N, β + d) ≤ m · (β + d+ 1)N =
(
2m(d+ 1)

)2O(N+1)

.

Using this estimate as well as Theorem 3.2 (in place of Proposition 4.3) and the
remark following Lemma 5.1, one obtains a result similar to Proposition 5.2:

Lemma 5.3. The F [X ]-module SolF [X](A) is generated by vectors u(1), . . . , u(K) ∈
SolO[X](A) of degree at most (2md)2N and height at most

(5.2)
(
2m(d+ 1)

)2O(N+1)

(h+ 1).

Moreover, there exists a non-zero δ ∈ R of height bounded by (5.2) such that δy ∈
Du(1) + · · ·+Du(K) for every y ∈ SolD(A). �
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The global case. Proposition 5.2 and Lemma 5.3 now imply the existence of
generators of SolD(A) of small height:

Corollary 5.4. The D-module SolD(A) can be generated by solutions of degree at
most (2md)(N+1)O(N)

and of height at most

C2 ·
(
2m(d+ 1)

)(N+1)O(N)

(h+ 1).

Here C2 is a constant only depending on F .

Proof. By Lemma 5.3 we find u(1), . . . , u(K) ∈ M := SolD(A) with the follow-
ing properties: u(1), . . . , u(K) generate the F [X ]-module SolF [X](A) = MF [X ],
deg u(k) ≤ (2md)2N for all k, and h(u(k)) is bounded by (5.2), for each k. Moreover
we find an element 0 6= δ ∈ R of height bounded by (5.2) such that SolD(A) =
(M ′ : δ) with M ′ = Du(1) + · · ·+Du(K). For every maximal ideal m of R we find
generators v(1)

m , . . . , v
(Km)
m ∈ SolD(A) of MRm[X ] = SolRm[X](A) having degree

at most (2md)(N+1)O(N)
and height bounded by (5.1). By the remark following

Lemma 4.2, the vectors u(1), . . . , u(K) and v
(1)
m , . . . , v

(Km)
m , where m ranges over all

maximal ideals of R containing δ, generate SolD(A) = MF [X ] ∩R[X ]n. �

Remark. The number of generators of SolD(A) can be bounded in a similar way: If
δ is a unit in R, then u(1), . . . , u(K) generate SolD(A), and K ≤ n ·M(N, β + d) =

n
(
2m(d+ 1)

)2O(N+1)

. In general, by the remark after Lemma 1.3, there are at most
[F : Q] · h(δ)/ log 2 many maximal ideals of R containing δ. So we have at most

n ·M(N, γ+ d) ·
(
1 + [F : Q] ·h(δ)/ log 2

)
= n · [F : Q] ·

(
2m(d+ 1)

)(N+1)O(N)

(h+ 1)

generators in total.

6. Ideal membership

In this section we use the results obtained so far to give a proof of Theorem A
from the introduction. We begin by studying ideal membership problems of a
special form.

Bézout identities. Let R be a ring, f1, . . . , fn ∈ R[X ], and d = maxi deg fi. We
call a representation of 1 as a linear combination

(6.1) 1 = f1g1 + · · ·+ fngn

of f1, . . . , fn with coefficients g1, . . . , gn ∈ R[X ] a Bézout identity for f1, . . . , fn
in R[X ]. If R = F is a field, then from Hermann’s Theorem 3.4 it follows that
1 ∈ (f1, . . . , fn)F [X ] if and only if there exist g1, . . . , gn ∈ F [X ] of degree ≤ (2d)2N

satisfying the Bézout identity (6.1). By the effective version of Hilbert’s Null-
stellensatz due to Kollár [22], this bound may be improved substantially: if 1 ∈
(f1, . . . , fn)F [X ], then there are g1, . . . , gn ∈ F [X ] of degrees ≤ (3d)N satisfying
(6.1). For F = Q this means: if 1 ∈ (f1, . . . , fn)Q[X ], then there are δ ∈ Z \ {0}
and g1, . . . , gn ∈ Z[X ] of degree ≤ (3d)N with

δ = f1g1 + · · ·+ fngn.

We have the following bound for the size of δ, obtained along the lines of Lemma 5.3
(i.e., Cramer’s rule). From now on, F denotes a number field.
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Lemma 6.1. Suppose that R = OF is the ring of integers of F . If we have
1 ∈ (f1, . . . , fn)F [X ], then

δ = f1g1 + · · ·+ fngn

for some g1, . . . , gn ∈ R[X ] of degree ≤ (3d)N and some δ ∈ R, δ 6= 0, of height at
most (

2(d+ 1)
)O(N2+1)(

h(f1, . . . , fn) + 1
)
.

We now want to show that Kollár’s degree bound over fields entails a similar
bound for Bézout identities over rings of integers.

Proposition 6.2. Suppose that R = OF . If 1 ∈ (f1, . . . , fn), then there exist
g1, . . . , gn ∈ R[X ] with

1 = f1h1 + · · ·+ fnhn

and
deg hi ≤ [F : Q] · (3d)O(N2)

(
h1(f1, . . . , fn) + 1

)
for all i = 1, . . . , n.

Before we begin with the proof, we state an elementary lemma whose proof is
left to the reader:

Lemma 6.3. Let U = (U1, . . . , Un), V = (V1, . . . , Vn) be tuples of pairwise distinct
indeterminates over Z, and let e ≥ 1 be an integer. There exist polynomials

g
(e)
1 (U, V ), . . . , g(e)

n (U, V )

with non-negative integer coefficients such that

(6.2)
(
1 + U1V1 + · · ·+ UnVn

)e = 1 + g
(e)
1 (U, V )U1 + · · ·+ g(e)

n (U, V )Un

and degU g
(e)
j = e− 1, degV g

(e)
j = e.

We first show a local analogue of Proposition 6.2:

Lemma 6.4. Suppose that R = (OF )p, where p 6= 0 is a prime ideal of OF . If
1 ∈ (f1, . . . , fn), then

1 = f1h1 + · · ·+ fnhn

for some h1, . . . , hn ∈ R[X ] of degree at most

(6.3) [F : Q] · (3d)O(N2)
(
h(f1, . . . , fn) + 1

)
/ log p.

Here p is the unique prime number such that Z ∩ p = pZ.

Proof. Suppose 1 ∈ (f1, . . . , fn). Then 1 ∈ (f1, . . . , fn)F [X ]; hence by Lemma 6.1
there exist g1, . . . , gn ∈ R[X ] of degree at most (3d)N and a non-zero δ ∈ R of

height at most
(
2(d+ 1)

)O(N2)(h+ 1) such that

(6.4) δ = f1g1 + · · ·+ fngn.

Here and below h = h(f1, . . . , fn). If δ is a unit in R, then

1 = f1(g1/δ) + · · ·+ fn(gn/δ)

is a Bézout identity for f1, . . . , fn in R[X ], and hi := gi/δ, i = 1, . . . , n, have the
required properties. Suppose that δ is not a unit, so e = vp(δ) ≥ 1. We have
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1 ∈ (f1, . . . , fn), where f is the canonical image of f ∈ R[X ] in (R/pR)[X ]. By
Kollár’s theorem [22] applied to the field R/pR, there exist r1, . . . , rn ∈ R[X ] with

1− (r1f1 + · · ·+ rnfn) ∈ pR[X ]

and deg rj ≤ (3d)N for all j = 1, . . . , n. Specializing the Ui’s to (f1, . . . , fn) and the
Vi’s to (−r1, . . . ,−rn) in (6.2) gives s1, . . . , sn ∈ R[X ] and s ∈ peR[X ] such that

(6.5) 1− (f1s1 + · · ·+ fnsn) = s.

We have deg sj ≤ e
(
d + (3d)N

)
− d for all j; hence deg s ≤ e

(
d + (3d)N

)
. From

(6.4) and (6.5) we get

1 = f1s1 + · · ·+ fnsn + s = f1h1 + · · ·+ fnhn

with hj = sj + (s/δ)gj ∈ R[X ]. We have

deg(sgj) ≤ e
(
d+ (3d)N

)
+ (3d)N ≤ e(3d)N+1,

and since
(
2(d+ 1)

)O(N2+1) = (3d)O(N2), we get

e · log p ≤ [F : Q] · h(δ) = [F : Q] · (3d)O(N2)(h+ 1)

by the remarks following Lemma 1.3, for N > 0, d > 0. It follows that deg hj is
bounded from above by (6.3), for j = 1, . . . , n. �

Now suppose that R = OF , and assume that 1 ∈ (f1, . . . , fn). Hence by
Lemma 6.1 there are g1, . . . , gn ∈ R[X ] of degree at most (3d)N and a non-zero

δ ∈ R of height at most
(
2(d+ 1)

)O(N2+1)(h+ 1) such that

δ = f1g1 + · · ·+ fngn.

For every prime ideal p of R containing δ, and p the prime number generating the
ideal Z ∩ p, we find h

(p)
1 , . . . , h

(p)
n ∈ R[X ] of degree bounded by (6.3) as well as

δ(p) ∈ R \ p such that

δ(p) = f1h
(p)
1 + · · ·+ fnh

(p)
n .

Let p1, . . . , pK be the pairwise distinct prime ideals of R containing δ. Then there
exist a, a1, . . . , aK ∈ R such that

1 = aδ + a1δ
(p1) + · · ·+ aKδ

(pK).

Hence, letting hj = agj + a1h
(p1)
j + · · ·+ aKh

(pK)
j ∈ R[X ] for j = 1, . . . , n, we get

f1h1 + · · ·+ fnhn = a(f1g1 + · · ·+ fngn) +
K∑
k=1

ak
(
f1h

(pk)
1 + · · ·+ fnh

(pk)
n

)
= aδ +

K∑
k=1

akδ
(pk) = 1.

From this Proposition 6.2 follows. �

Remark. By [23, Theorem 3.6], the height of the denominator δ in Lemma 6.1 can
be bounded in terms of N , d, n and the height of f1, . . . , fn by a bound which is
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single-exponential in d and linear in h(f1, . . . , fn), while at the same time retaining
a single-exponential bound on the degrees of the gj :

deg gi ≤ 4NdN ,

h(δ, g1, . . . , gn) ≤ 4N(N + 1)dN
(
h(f1, . . . , fn) + logn+ (N + 7) log(N + 1)d

)
.

This leads to the following improved degree bound in Proposition 6.2:

deg hi ≤ [F : Q] · (N + 1)O(1)d2N
(
h(f1, . . . , fn) + log n+ d

)
for all i.

In most cases this is much more precise. We decided to use the cruder bound on
h(δ) in Lemma 6.1 and the ensuing degree bounds in Proposition 6.2, since they
are independent of n. In the case OF = Z one could have also used Philippon’s
estimate [30] (without dependence on n)

deg gi ≤ (N + 2)dN , h(δ) ≤ c(N) · dN
(
h(f1, . . . , fn) + 1

)
,

where c(N) depends exponentially on N .

Ideal membership. In the following we let R = OF for a number field F . Let A
be an m× n-matrix with entries in R[X ] and let b ∈

(
R[X ]

)m be a column vector.

Theorem 6.5. If the system Ay = b has a solution in D = R[X ], then it has such
a solution of degree at most

(6.6) [F : Q] · C2 ·
(
2m deg(A, b)

)(N+1)O(N)

·
(
h(A, b) + 1

)
.

Here the constant C2 depends only on F .

Proof. Put d = deg(A, b) and h = h(A, b). By Corollary 5.4 there exist generators
z(1), . . . , z(K) for the D-module of solutions to the system of homogeneous linear
equations (A,−b)z = 0, where z is a vector of n+ 1 unknowns z1, . . . , zn+1, with

deg
(
z(k)

)
= (2md)(N+1)O(N)

,(6.7)

h
(
z(k)

)
= C2 ·

(
2m(d+ 1)

)(N+1)O(N)

(h+ 1)(6.8)

for all k = 1, . . . ,K. The constant C2 only depends on the number field F . For
each k let z(k)

n+1 ∈ R[X ] be the last component of z(k). Clearly, Ay = b is solvable
in R[X ] if and only if 1 ∈

(
z

(1)
n+1, . . . , z

(K)
n+1

)
. Moreover, if h1, . . . , hK are elements

of R[X ] such that
1 = h1z

(1)
n+1 + · · ·+ hKz

(K)
n+1,

then y ∈
(
R[X ])n with [

y
1

]
= h1z

(1) + · · ·+ hKz
(K)

is a solution to Ay = b. By Proposition 6.2 we find such h1, . . . , hK with

deg(hk) ≤ [F : Q] ·
(
3 max

l
deg
(
z(l)
))O(N2)(max

l
h
(
z(l)
)

+ 1
)

for all k. From (6.7) and (6.8) it follows that then the vector y has degree at most
(6.6) as required. �

The doubly exponential degree bound on the solutions y in Theorem 6.5 implies
a doubly exponential bound on h(y). See [29] for good bounds on the height of
solutions to linear equations over R.

For m = 1 the previous theorem yields:
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Corollary 6.6. Let f0, f1, . . . , fn ∈ R[X ], and put d = deg(f1, . . . , fn), h =
h(f1, . . . , fn). If f0 ∈ (f1, . . . , fn), then there exist g1, . . . , gn ∈ R[X ] with

f0 = g1f1 + · · ·+ gnfn

and

deg(g1, . . . , gn) ≤ [F : Q] · C2 · (2d)(N+1)O(N)
.

The constant C2 depends only on F . �

Using the criterion for primeness of ideals in Z[X ] given in Corollary 4.9, we get:

Corollary 6.7. One can test elementary recursively whether finitely many given
polynomials from Z[X ] generate a prime ideal I.

Proof. It is well known that the conditions “IQ[X ] prime” and “I mod p ⊆ Fp[X ]
prime” (for a prime number p) can be tested elementary recursively [20], [35].
The condition “IQ[X ] ∩ Z[X ] = I” may be tested elementary recursively using
Proposition 4.7 and Corollary 6.6. �

See also [14] for an algorithm to test primeness of ideals in Z[X ], which is however
not even obviously primitive recursive.

Similarly to Theorem 6.5, using Proposition 5.2 and Lemma 6.4 in place of
Corollary 5.4 and Proposition 6.2, respectively, one shows:

Theorem 6.8. Let p be a non-zero prime ideal of R and p the unique prime number
with Z ∩ p = pZ. If the system Ay = b has a solution in Rp[X ], then it has such a
solution of degree at most

[F : Q] · C2 ·
(
2m deg(A, b)

)(N+1)O(N)

·
(
h(A, b) + 1

)
/ log p.

Here C2 is a constant which only depends on F . �

Final remarks. From Theorem 6.5 we obtain an effective reduction of the ideal
membership problem for R[X ], where R = OF for a number field F , to the solv-
ability of a (huge) system of linear equations over R. As in the case of fields, this
leads to a simple algorithm for deciding membership in ideals of R[X ]. Certainly
algorithms using Gröbner bases in R[X ] are much more effective in practice; it
remains to establish doubly exponential degree and height bounds for the elements
of Gröbner bases in R[X ]. We plan to address this issue at a later point.

In [26], Mayr shows that ideal membership problems f0 ∈ (f1, . . . , fn) with
f0, f1, . . . , fn ∈ Q[X ] can be decided by an algorithm which uses space that grows
exponentially in the size of the input f0, . . . , fn. Together with [27] this establishes
that ideal membership in Q[X ] is exponential-space complete. The proof rests on an
efficient parallel algorithm for computing the rank of m×m-matrices over Q in time
O(log2m) and the parallel computation thesis (“parallel time = sequential space”).
By [27], ideal membership in Z[X ] is exponential-space hard. Theorem 6.5 (and the
reduction given in [26]) unfortunately only shows that ideal membership in Z[X ] is
exponential-space complete provided that solvability of systems of linear equations
over Z can be decided using logarithmic space. However, this is even unknown for
systems consisting of a single equation of the form 1 = ax+ by (a, b ∈ Z); see [18].
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28. G. Moreno Soćıas, Length of polynomial ascending chains and primitive recursiveness, Math.
Scand. 71 (1992), no. 2, 181–205. MR 94d:13019

29. R. O’Leary and J. Vaaler, Small solutions to inhomogeneous linear equations over number
fields, Trans. Amer. Math. Soc. 336 (1993), no. 2, 915–931. MR 93f:11032
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