IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Geometric control in the presence of a black box


Authors: Nicolas Burq and Maciej Zworski
Translated by:
Journal: J. Amer. Math. Soc. 17 (2004), 443-471
MSC (2000): Primary 35B37, 35P20, 81Q20
DOI: https://doi.org/10.1090/S0894-0347-04-00452-7
Published electronically: February 3, 2004
MathSciNet review: 2051618
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We apply the ``black box scattering'' point of view to problems in control theory for the Schrödinger equation and in high energy eigenvalue scarring. We show how resolvent bounds with origins in scattering theory, combined with semi-classical propagation, give quantitative control estimates. We also show how they imply control for time dependent problems.


References [Enhancements On Off] (What's this?)

  • 1. A. Bäcker, R. Schubert, and P. Stifter.
    On the number of bouncing ball modes in billiards.
    J. Phys. A: Math. Gen. 30:6783-6795, 1997.
  • 2. C. Bardos, G. Lebeau, and J. Rauch.
    Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary.
    SIAM J. Control Optim. 30:1024-1065, 1992. MR 94b:93067
  • 3. J.-F. Bony and L. Michel.
    Microlocalization of resonant states and estimates of the residue of scattering amplitude,
    Comm. Math. Phys., to appear.
  • 4. N. Burq.
    Control for Schrodinger equations on product manifolds.
    Unpublished, 1992.
  • 5. N. Burq.
    Contrôle de l'équation des plaques en présence d'obstacles strictement convexes.
    Mémoire de la S.M.F., 55, 1993.
    Supplément au Bulletin de la Société Mathématique de France. MR 95d:93007
  • 6. N. Burq.
    Semi-classical estimates for the resolvent in non trapping geometries.
    Int. Math. Res. Notices 5:221-241, 2002. MR 2002k:81069
  • 7. N. Burq.
    Smoothing effect for Schrödinger boundary value problems.
    Preprint, 2002.
  • 8. N. Burq and P. Gérard,
    Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes,
    Comptes Rendus de L'Académie des Sciences, 749-752, t. 325, Série I, 1996. MR 98j:93052
  • 9. N. Burq and and G. Lebeau.
    Mesures de défaut de compacité, application au système de Lamé,
    Ann. Sci. École Norm. Sup. (4), No. 34, 817-870, 2001. MR 2003a:35186
  • 10. N. Burq and M. Zworski.
    Eigenfunctions for partially rectangular billiards.
    math.SP/0312098.
  • 11. P.A. Chinnery and V.F. Humphrey.
    Experimental visualization of acoustic resonances within a stadium-shaped cavity.
    Physical Review E, 53, 1996, 272-276.
  • 12. T. Christiansen and M. Zworski.
    Resonance wave expansions: two hyperbolic examples. Comm. Math. Phys. 212:323-336, 2000. MR 2001j:58050
  • 13. Y. Colin de Verdière and B. Parisse.
    Équilibre instable en régime semi-classique. I. Concentration microlocale.
    Comm. Partial Differential Equations, 9-10, 19, 1535-1563, 1994. MR 96b:58112
  • 14. N. Dencker, J. Sjöstrand, and M. Zworski.
    Pseudospectra of semiclassical (pseudo)differential operators.
    Comm. Pure Appl. Math. 57:384-415, 2004.
  • 15. M. Dimassi and J. Sjöstrand.
    Spectral asymptotics in the semiclassical limit.
    Cambridge Universtity Press, 1999. MR 2001b:35237
  • 16. H. Donnelly.
    Quantum unique ergodicity.
    Proc. Amer. Math. Soc. 131, 2945-2951, 2003.
  • 17. Ch. Gérard.
    Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes.
    Mém. Soc. Math. France (N.S.) 31 (1988), 146 pp. MR 91e:35168
  • 18. Ch. Gérard and J. Sjöstrand.
    Resonances en limite semiclassique et exposants de Lyapunov,
    Comm. Math. Phys. 116-2, 193-213, 1988. MR 89f:35057
  • 19. P. Gérard and E. Leichtnam,
    Ergodic Properties of Eigenfunctions for the Dirichlet Problem,
    Duke Math. Jour. 71, 559-607, 1993. MR 94i:35146
  • 20. L. Guillopé.
    Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique.
    Duke Math. J. 53:827-848, 1986. MR 88e:11042
  • 21. J.P. Françoise and V. Guillemin.
    On the period spectrum of a symplectic mapping,
    J. Funct. Anal. 100:317-358, 1993. MR 92j:58083
  • 22. A. Haraux.
    Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire,
    J. Math. Pures Appl. 68-4:457-465, 1989. MR 91e:93039
  • 23. B. Helffer and J. Sjöstrand.
    Resonances en limite semi-classique,
    Mémoire de la S.M.F., 114, 1986. MR 88i:81025
  • 24. L. Hörmander.
    The Analysis of Linear Partial Differential Operators. Vol. III, IV.
    Springer-Verlag, Berlin, 1985. MR 87d:35002a; MR 87d:35002b
  • 25. A. Iantchenko, J. Sjöstrand, and M. Zworski.
    Birkhoff normal forms in semi-classical inverse problems.
    Math. Res. Lett. 9:337-362, 2002. MR 2003f:35284
  • 26. M. Ikawa.
    Decay of solution of the wave equation in the exterior of several convex bodies.
    Annales de l'Institut Fourier 38(2):113-146, 1988. MR 90a:35028
  • 27. S. Jaffard
    Contrôle interne exact des vibrations d'une plaque rectangulaire.
    Portugal. Math. 47 (1990), no. 4, 423-429. MR 91j:93051
  • 28. J.P. Kahane.
    Pseudo-périodicité et séries de Fourier lacunaires.
    Annales Sc. de l'Ecole Normale Supérieure 79, 1962. MR 27:4019
  • 29. G. Lebeau.
    Contrôle de l'équation de Schrödinger.
    Journal de Mathématiques Pures et Appl. 71:267-291, 1992. MR 93i:35018
  • 30. J.L. Lions.
    Contrôlabilité exacte, perturbation et stabilisation des systèmes distribués, R.M.A.,
    Masson, 1988. MR 90a:49040
  • 31. E. Lindenstrauss.
    Invariant measures and arithmetic quantum unique ergodicity,
    preprint, 2003.
  • 32. R.B. Melrose and J. Sjöstrand.
    Singularities of Boundary Value Problems I and II,
    Comm. in Pure Appl. Math. 31 and 35, 593-617 and 129-168, 1978 and 1982. MR 58:11859; MR 83h:35120
  • 33. L. Miller.
    How violent are fast controls for Schrödinger equation?
    preprint, 2003.
  • 34. P. Sarnak.
    Arithmetic quantum chaos.
    In The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc., pages 183-236. Bar-Ilan Univ., Ramat Gan, 1995. MR 96d:11059
  • 35. J. Sjöstrand.
    Geometric bounds on the density of resonances for semiclassical problems,
    Duke Math. J. 60:1-57, 1990. MR 91e:35166
  • 36. J. Sjöstrand.
    A trace formula and review of some estimates for resonances.
    In Microlocal Analysis and Spectral Theory, volume 490 of NATO ASI series C, pages 377-437. Kluwer, 1997. MR 99e:47064
  • 37. J. Sjöstrand and M. Zworski.
    Complex scaling and the distribution of scattering poles.
    Journal of the A.M.S. 4(4):729-769, 1991. MR 92g:35166
  • 38. J. Sjöstrand and M. Zworski.
    Quantum monodromy and semiclassical trace formulæ.
    Journal d'Mathématiques Pures et Appl. 81:1-33, 2002.
  • 39. J.A.K. Suykens and J. Vandewalle (Eds.).
    Nonlinear Modeling: advanced black-box techniques,
    Kluwer Academic Publishers Boston, June 1998.
  • 40. S.H. Tang and M. Zworski.
    From quasimodes to resonances.
    Math. Res. Lett. 5:261-272, 1998. MR 99i:47088
  • 41. J. Wunsch and M. Zworski.
    Distribution of resonances for asymptotically Euclidean manifolds.
    J. Diff. Geom. 55:43-82, 2000. MR 2002e:58062
  • 42. S. Zelditch.
    Quantum unique ergodicity.
    math-ph/0301035.
  • 43. S. Zelditch and M. Zworski,
    Ergodicity of eigenfunctions for ergodic billiards.
    Comm. Math. Phys. 175:673-682, 1996. MR 97a:58193
  • 44. E. Zuazua.
    Contrôlabilité exacte en temps arbitrairement petit de quelques modèles de plaques.
    Appendix A.1 to [30]. MR 90a:49040

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35B37, 35P20, 81Q20

Retrieve articles in all journals with MSC (2000): 35B37, 35P20, 81Q20


Additional Information

Nicolas Burq
Affiliation: Université Paris Sud, Mathématiques, Bât 425, 91405 Orsay Cedex, France
Email: Nicolas.burq@math.u-psud.fr

Maciej Zworski
Affiliation: Mathematics Department, University of California, Evans Hall, Berkeley, California 94720
Email: zworski@math.berkeley.edu

DOI: https://doi.org/10.1090/S0894-0347-04-00452-7
Received by editor(s): May 14, 2003
Published electronically: February 3, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society