The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).


Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Quantum groups, the loop Grassmannian, and the Springer resolution

Authors: Sergey Arkhipov, Roman Bezrukavnikov and Victor Ginzburg
Journal: J. Amer. Math. Soc. 17 (2004), 595-678
MSC (2000): Primary 16S38; Secondary 14A22
Published electronically: April 13, 2004
MathSciNet review: 2053952
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish equivalences of the following three triangulated categories:

\begin{displaymath}D_\text{quantum}(\mathfrak{g})\enspace\longleftrightarrow\ens... ...ace \longleftrightarrow\enspace D_\text{perverse}(\mathsf{Gr}).\end{displaymath}

Here, $D_\text{quantum}(\mathfrak{g})$ is the derived category of the principal block of finite-dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra $\mathfrak{g}$; the category $D^G_\text{coherent}(\widetilde{{\mathcal N}})$ is defined in terms of coherent sheaves on the cotangent bundle on the (finite-dimensional) flag manifold for $G$ ($=$ semisimple group with Lie algebra $\mathfrak{g}$), and the category $D_\text{perverse}({\mathsf{Gr}})$ is the derived category of perverse sheaves on the Grassmannian ${\mathsf{Gr}}$ associated with the loop group $LG^\vee$, where $G^\vee$ is the Langlands dual group, smooth along the Schubert stratification.

The equivalence between $D_\text{quantum}(\mathfrak{g})$ and $D^G_\text{coherent}(\widetilde{{\mathcal N}})$ is an ``enhancement'' of the known expression (due to Ginzburg and Kumar) for quantum group cohomology in terms of nilpotent variety. The equivalence between $D_\text{perverse}(\mathsf{Gr})$and $D^G_\text{coherent}(\widetilde{{\mathcal N}})$ can be viewed as a ``categorification'' of the isomorphism between two completely different geometric realizations of the (fundamental polynomial representation of the) affine Hecke algebra that has played a key role in the proof of the Deligne-Langlands-Lusztig conjecture. One realization is in terms of locally constant functions on the flag manifold of a $p$-adic reductive group, while the other is in terms of equivariant $K$-theory of a complex (Steinberg) variety for the dual group.

The composite of the two equivalences above yields an equivalence between abelian categories of quantum group representations and perverse sheaves. A similar equivalence at an even root of unity can be deduced, following the Lusztig program, from earlier deep results of Kazhdan-Lusztig and Kashiwara-Tanisaki. Our approach is independent of these results and is totally different (it does not rely on the representation theory of Kac-Moody algebras). It also gives way to proving Humphreys' conjectures on tilting $U_q(\mathfrak{g})$-modules, as will be explained in a separate paper.

References [Enhancements On Off] (What's this?)

  • [AB] S. Arkhipov, R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, math.RT/0201073.
  • [APW] H.H. Andersen, P. Polo, K. Wen, Representations of quantum algebras, Invent. Math. 104 (1991), 1-59.MR 92e:17011
  • [APW2] H.H. Andersen, P. Polo, K. Wen, Injective modules for quantum algebras, Amer. J. Math. 114 (1992), 571-604. MR 93j:17018
  • [AP] H.H. Andersen, J. Paradowski, Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys. 169 (1995), 563-588.MR 96e:17026
  • [BBM] P. Baum, J.-L. Brylinski, R. MacPherson, Cohomologie équivariante délocalisée. C. R. Acad. Sci. Paris 300 (1985), 605-608. MR 86g:55006
  • [BBD] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, 100 (1982). MR 86g:32015
  • [BD] A. Beilinson, V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigen-sheaves. Manuscript available at
    ${\mathtt{}}$/~ ${\mathtt{benzvi}}$.
  • [BlG] A. Beilinson, V. Ginzburg, Wall-crossing functors and $\mathcal D$-modules, Represent. Theory 3 (1999), 1-31.MR 2000d:17007
  • [BGS] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in Representation Theory, J. Amer. Math. Soc. 9 (1996), 473-527. MR 96k:17010
  • [BGSh] A. Beilinson, V. Ginzburg, V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), 317-350. MR 91c:18011
  • [BGG] J. Bernstein, I. Gelfand, S. Gelfand, Algebraic vector bundles on ${\mathbb{P} }^n$ and problems of linear algebra. (Russian) Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66-67. MR 80c:14010a
  • [BL] J. Bernstein, V. Lunts, Equivariant sheaves and functors, Lecture Notes in Math., 1578 Springer-Verlag, Berlin, 1994. MR 95k:55012
  • [B1] R. Bezrukavnikov, On tensor categories attached to cells in affine Weyl groups, arXiv:math.RT/0010089.
  • [B2] R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv:math.AG/0005152.
  • [B3] R. Bezrukavnikov, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1-18. arXiv:math.RT/0102039. MR 2004c:17010
  • [B4] R. Bezrukavnikov, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, arXiv:math.RT/0201256.
  • [BFS] R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable sheaves and quantum groups. Lect. Notes in Math., 1691, Springer-Verlag, Berlin, 1998. MR 2000g:17014
  • [BG] R. Bezrukavnikov, V. Ginzburg, Remarks on deformation theory, in preparation.
  • [Br] R. Brylinski, Limits of weight spaces, Lusztig's $q$-analogs, and fiberings of adjoint orbits. J. Amer. Math. Soc. 2 (1989), 517-533. MR 90g:17011
  • [CG] N. Chriss, V. Ginzburg. Representation Theory and Complex Geometry. Birkhäuser Boston, Boston, MA, 1997. MR 98i:22021
  • [CPS] E. Cline, B. Parshall, L. Scott, Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391 (1988), 85-99. MR 90d:18005
  • [De] P. Deligne, La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137-252. MR 83c:14017
  • [DM] P. Deligne, J. Milne, Tannakian Categories, Lecture Notes in Math., 900 (1982), 101-228. MR 84m:14046
  • [DK] C. De Concini, V. Kac, Representations of quantum groups at roots of $1$. Operator algebras, unitary representations, enveloping algebras, and invariant theory, 471-506, Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990. MR 92g:17012
  • [DL] C. De Concini, V. Lyubashenko, Quantum function algebra at roots of $1$. Adv. Math. 108 (1994), 205-262. MR 95m:17014
  • [DKP] C. De Concini, V. Kac, and C. Procesi, Quantum coadjoint action. J. Amer. Math. Soc. 5 (1992), 151-189. MR 93f:17020
  • [Dr] V. Drinfeld, DG quotients of DG categories, J. of Algebra 272 (2004), 643-691. [arXiv:math.KT/0210114].
  • [FG] E. Frenkel, D. Gaitsgory, ${\mathscr D}$-modules on the affine Grassmannian and representations of affine Kac-Moody algebras. Preprint arXiv:math.AG/0303173.
  • [Ga] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math. 144 (2001), 253-280. MR 2002d:14072
  • [GM] S. Gelfand, Yu. Manin, Methods of homological algebra. Second edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. MR 2003m:18001
  • [G1] V. Ginzburg, Perverse sheaves and $\mathbb{C} ^*$-actions, J. Amer. Math. Soc. 4 (1991), 483-490. MR 92d:14013
  • [G2] V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality. arXiv:alg-geom/9511007.
  • [GK] V. Ginzburg, S. Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), 179-198. MR 94c:17026
  • [GKM] M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131 (1998), 25-83. MR 99c:55009
  • [Ja] J. Jantzen, Representations of algebraic groups. Pure and Appl. Math. 131. Academic Press, 1987. MR 89c:20001
  • [Jo] A. Joseph, Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete 29, Springer-Verlag, Berlin, 1995. MR 96d:17015
  • [KL1] D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math., 36 (1980), 185-203. MR 84g:14054
  • [KL2] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras I - IV, J. Amer. Math. Soc. 6 (1993), 905-947; 7 (1994), 383-453.MR 93m:17014; MR 94g:17048; MR 94g:17049
  • [KL3] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87 (1987), 153-215. MR 88d:11121
  • [Ke] B. Keller, Deriving $\operatorname{{dg}}$-categories. Ann. Sci. École Norm. Sup. 27 (1994), 63-102. MR 95e:18010
  • [Ko] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404. MR 28:1252
  • [KT] M. Kashiwara, T. Tanisaki, The Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), 21-62. MR 96j:17016
  • [Lo] J.-L. Loday, Cyclic homology. Gründlehren der Mathematischen Wissenschaften 301 Springer-Verlag, Berlin, 1992. MR 94a:19004
  • [L1] G. Lusztig, Singularities, character formulas, and weight multiplicities, Astérisque 101-102 (1982), 208-229. MR 85m:17005
  • [L2] G. Lusztig, Introduction to quantum groups. Progress in Mathematics, 110, Birkhäuser Boston , Boston, MA, 1993. MR 94m:17016
  • [L3] G. Lusztig, Quantum groups at roots of $1$. Geom. Dedicata 35 (1990), 89-113. MR 91j:17018
  • [L4] G. Lusztig, Cells in affine Weyl groups and tensor categories. Adv. Math. 129 (1997), 85-98. MR 98f:20030
  • [L5] G. Lusztig, Monodromic systems on affine flag manifolds. Proc. Roy. Soc. London 445 (1994), 231-246. MR 95m:20049
  • [MV] I. Mirkovic, K. Vilonen, Perverse Sheaves on Loop Grassmannians and Langlands Duality, Math. Res. Lett. 7 (2000), 13-24.MR 2001h:14020
  • [Mo] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math., 818, Springer-Verlag, Berlin/New-York, 1980. MR 81j:16041
  • [PS] A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, 1986. MR 88i:22049
  • [Ta] T. Tanisaki, Hodge modules, equivariant $K$-theory and Hecke algebras. Publ. Res. Inst. Math. Sci. 23 (1987), 841-879. MR 89c:20070
  • [Vo] D. Vogan, Representations of real reductive Lie groups. Progress in Mathematics, 15. Birkhäuser, Boston, MA, 1981. MR 83c:22022

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 16S38, 14A22

Retrieve articles in all journals with MSC (2000): 16S38, 14A22

Additional Information

Sergey Arkhipov
Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06520

Roman Bezrukavnikov
Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208

Victor Ginzburg
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Received by editor(s): April 20, 2003
Published electronically: April 13, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society