Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives

Author:
K. Bromberg

Journal:
J. Amer. Math. Soc. **17** (2004), 783-826

MSC (2000):
Primary 30F40, 57M50

DOI:
https://doi.org/10.1090/S0894-0347-04-00462-X

Published electronically:
July 21, 2004

MathSciNet review:
2083468

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a geometrically finite hyperbolic cone-manifold, with the cone-singularity sufficiently short, we construct a one-parameter family of cone-manifolds decreasing the cone-angle to zero. We also control the geometry of this one-parameter family via the Schwarzian derivative of the projective boundary and the length of closed geodesics.

**[And]**C. G. Anderson.

Projective structures on Riemann surfaces and developing maps to and .*Preprint*(1999).**[AC1]**J. Anderson and R. Canary.

Cores of hyperbolic 3-manifolds and limits of Kleinian groups.*Amer. J. Math.***118**(1996), 745-779. MR**1400058 (97k:57015)****[AC2]**J. Anderson and R. Canary.

Cores of hyperbolic 3-manifolds and limits of Kleinian groups II.*J. LMS***61**(2000), 489-505. MR**1760675 (2001h:30041)****[BGS]**W. Ballman, M. Gromov, and V. Schroeder.*Manifolds of Nonpositive Curvature*.

Birkhauser, 1985. MR**0823981 (87h:53050)****[Bers]**L. Bers.

On boundaries of Teichmüller spaces and on Kleinian groups: I.*Annals of Math.***91**(1970), 570-600. MR**0297992 (45:7044)****[BB]**J. Brock and K. Bromberg.

On the density of geometrically finite Kleinian groups.*To appear Acta Math.***[BBES]**J. Brock, K. Bromberg, R. Evans, and J. Souto.

Boundaries of deformation spaces and Ahlfors' measure conjecture.*Publ. Math. I.H.É.S.***98**(2003), 145-166. MR**2031201****[Br1]**K. Bromberg.

Rigidity of geometrically finite hyperbolic cone-manifolds.*Geom. Dedicata***105**(2004), 143-170. MR**2057249****[Br2]**K. Bromberg.

Projective structures with degenerate holonomy and the Bers' density conjecture.*2002 preprint available at*`front.math.ucdavis.edu/math.GT/0211402`.**[Can]**R. D. Canary.

The conformal boundary and the boundary of the convex core.*Duke Math. J.***106**(2000), 193-207. MR**1810370 (2001m:57024)****[CCHS]**R. D. Canary, M. Culler, S. Hersonsky, and P. B. Shalen.

Approximation by maximal cusps in the boundaries of quasiconformal deformation spaces.*J. Diff. Geom.***64**(2003), 57-109. MR**2015044****[CEG]**R. D. Canary, D. B. A. Epstein, and P. Green.

Notes on notes of Thurston.

In*Analytical and Geometric Aspects of Hyperbolic Space*, pages 3-92. Cambridge University Press, 1987. MR**0903850 (89e:57008)****[CH]**R. D. Canary and S. Hersonsky.

Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3-manifolds.*To appear Amer. J. of Math.***[CM]**R. D. Canary and Y. N. Minsky.

On limits of tame hyperbolic 3-manifolds.*J. Diff. Geom.***43**(1996), 1-41. MR**1424418 (98f:57021)****[Ep]**C. Epstein.

Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space.*preprint*.**[Ev]**R. Evans.

Tameness persists.*To appear Amer. J. Math.***[HK1]**C. Hodgson and S. Kerckhoff.

Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery.*J. Diff. Geom.***48**(1998), 1-59. MR**1622600 (99b:57030)****[HK2]**C. Hodgson and S. Kerckhoff.

Harmonic deformations of hyperbolic 3-manifolds.

In*Kleinian Groups and Hyperbolic 3-manifolds*. London Math Society Lecture Notes, Cambridge University Press, 2003. MR**2044544****[HK3]**C. Hodgson and S. Kerckhoff.

The shape of hyperbolic Dehn surgery space.*In preparation*.**[HK4]**C. Hodgson and S. Kerckhoff.

Universal bounds for hyperbolic Dehn surgery.*2002 preprint available at*`front.math.ucdavis.edu/math.GT/0204345`.**[Ko1]**S. Kodani.

Convergence theorem for Riemannian manifolds with boundary.*Compositio Math.***75**(1990), 171-192. MR**1065204 (92b:53066)****[Ko2]**S. Kojima.

Deformations of hyperbolic 3-cone manifolds.*J. Diff. Geom.***49**(1998), 469-516. MR**1669649 (2000d:57023)****[Mc]**C. McMullen.

Cusps are dense.*Annals of Math.***133**(1991), 217-247. MR**1087348 (91m:30058)****[Ot]**J. P. Otal.

Les géodésiques fermées d'une variété hyperbolique en tant que noeuds.

In*Kleinian Groups and Hyperbolic 3-manifolds*. London Math Society Lecture Notes, Cambridge University Press, 2003. MR**2044546****[RS]**I. Rivin and J-M. Schlenker.

On the Schläfli differential formula.*1998 preprint available at*`front.math.ucdavis.edu/math.DG/0001176`.**[Wu]**H. Wu.

The Bochner technique in differential geometry.*Math. Reports, London*(1987). MR**1079031 (91h:58031)**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
30F40,
57M50

Retrieve articles in all journals with MSC (2000): 30F40, 57M50

Additional Information

**K. Bromberg**

Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Address at time of publication:
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Email:
bromberg@math.utah.edu

DOI:
https://doi.org/10.1090/S0894-0347-04-00462-X

Keywords:
Kleinian groups,
cone-manifolds,
Schwarzian derivative

Received by editor(s):
December 10, 2002

Published electronically:
July 21, 2004

Additional Notes:
Supported by a grant from the NSF

Article copyright:
© Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.