Hyperbolic cone-manifolds, short geodesics, and Schwarzian derivatives

Author:
K. Bromberg

Journal:
J. Amer. Math. Soc. **17** (2004), 783-826

MSC (2000):
Primary 30F40, 57M50

Published electronically:
July 21, 2004

MathSciNet review:
2083468

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a geometrically finite hyperbolic cone-manifold, with the cone-singularity sufficiently short, we construct a one-parameter family of cone-manifolds decreasing the cone-angle to zero. We also control the geometry of this one-parameter family via the Schwarzian derivative of the projective boundary and the length of closed geodesics.

**[And]**C. G. Anderson.

Projective structures on Riemann surfaces and developing maps to and .*Preprint*(1999).**[AC1]**James W. Anderson and Richard D. Canary,*Cores of hyperbolic 3-manifolds and limits of Kleinian groups*, Amer. J. Math.**118**(1996), no. 4, 745–779. MR**1400058****[AC2]**James W. Anderson and Richard D. Canary,*Cores of hyperbolic 3-manifolds and limits of Kleinian groups. II*, J. London Math. Soc. (2)**61**(2000), no. 2, 489–505. MR**1760675**, 10.1112/S0024610799008595**[BGS]**Werner Ballmann, Mikhael Gromov, and Viktor Schroeder,*Manifolds of nonpositive curvature*, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**823981****[Bers]**Lipman Bers,*On boundaries of Teichmüller spaces and on Kleinian groups. I*, Ann. of Math. (2)**91**(1970), 570–600. MR**0297992****[BB]**J. Brock and K. Bromberg.

On the density of geometrically finite Kleinian groups.*To appear Acta Math.***[BBES]**Jeffrey Brock, Kenneth Bromberg, Richard Evans, and Juan Souto,*Tameness on the boundary and Ahlfors’ measure conjecture*, Publ. Math. Inst. Hautes Études Sci.**98**(2003), 145–166. MR**2031201**, 10.1007/s10240-003-0018-y**[Br1]**K. Bromberg,*Rigidity of geometrically finite hyperbolic cone-manifolds*, Geom. Dedicata**105**(2004), 143–170. MR**2057249**, 10.1023/B:GEOM.0000024664.84428.e7**[Br2]**K. Bromberg.

Projective structures with degenerate holonomy and the Bers' density conjecture.*2002 preprint available at*`front.math.ucdavis.edu/math.GT/0211402`.**[Can]**R. D. Canary,*The conformal boundary and the boundary of the convex core*, Duke Math. J.**106**(2001), no. 1, 193–207. MR**1810370**, 10.1215/S0012-7094-01-10616-9**[CCHS]**Richard D. Canary, Marc Culler, Sa’ar Hersonsky, and Peter B. Shalen,*Approximation by maximal cusps in boundaries of deformation spaces of Kleinian groups*, J. Differential Geom.**64**(2003), no. 1, 57–109. MR**2015044****[CEG]**R. D. Canary, D. B. A. Epstein, and P. Green,*Notes on notes of Thurston*, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR**903850****[CH]**R. D. Canary and S. Hersonsky.

Ubiquity of geometric finiteness in boundaries of deformation spaces of hyperbolic 3-manifolds.*To appear Amer. J. of Math.***[CM]**Richard D. Canary and Yair N. Minsky,*On limits of tame hyperbolic 3-manifolds*, J. Differential Geom.**43**(1996), no. 1, 1–41. MR**1424418****[Ep]**C. Epstein.

Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space.*preprint*.**[Ev]**R. Evans.

Tameness persists.*To appear Amer. J. Math.***[HK1]**Craig D. Hodgson and Steven P. Kerckhoff,*Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery*, J. Differential Geom.**48**(1998), no. 1, 1–59. MR**1622600****[HK2]**Craig D. Hodgson and Steven P. Kerckhoff,*Harmonic deformations of hyperbolic 3-manifolds*, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003, pp. 41–73. MR**2044544**, 10.1017/CBO9780511542817.003**[HK3]**C. Hodgson and S. Kerckhoff.

The shape of hyperbolic Dehn surgery space.*In preparation*.**[HK4]**C. Hodgson and S. Kerckhoff.

Universal bounds for hyperbolic Dehn surgery.*2002 preprint available at*`front.math.ucdavis.edu/math.GT/0204345`.**[Ko1]**Shigeru Kodani,*Convergence theorem for Riemannian manifolds with boundary*, Compositio Math.**75**(1990), no. 2, 171–192. MR**1065204****[Ko2]**Sadayoshi Kojima,*Deformations of hyperbolic 3-cone-manifolds*, J. Differential Geom.**49**(1998), no. 3, 469–516. MR**1669649****[Mc]**Curt McMullen,*Cusps are dense*, Ann. of Math. (2)**133**(1991), no. 1, 217–247. MR**1087348**, 10.2307/2944328**[Ot]**Jean-Pierre Otal,*Les géodésiques fermées d’une variété hyperbolique en tant que nœuds*, Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001) London Math. Soc. Lecture Note Ser., vol. 299, Cambridge Univ. Press, Cambridge, 2003, pp. 95–104 (French, with English and French summaries). MR**2044546**, 10.1017/CBO9780511542817.005**[RS]**I. Rivin and J-M. Schlenker.

On the Schläfli differential formula.*1998 preprint available at*`front.math.ucdavis.edu/math.DG/0001176`.**[Wu]**Hung Hsi Wu,*The Bochner technique in differential geometry*, Math. Rep.**3**(1988), no. 2, i–xii and 289–538. MR**1079031**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
30F40,
57M50

Retrieve articles in all journals with MSC (2000): 30F40, 57M50

Additional Information

**K. Bromberg**

Affiliation:
Department of Mathematics, California Institute of Technology, Pasadena, California 91125

Address at time of publication:
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Email:
bromberg@math.utah.edu

DOI:
https://doi.org/10.1090/S0894-0347-04-00462-X

Keywords:
Kleinian groups,
cone-manifolds,
Schwarzian derivative

Received by editor(s):
December 10, 2002

Published electronically:
July 21, 2004

Additional Notes:
Supported by a grant from the NSF

Article copyright:
© Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.