Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Alternating signs of quiver coefficients


Author: Anders Skovsted Buch
Journal: J. Amer. Math. Soc. 18 (2005), 217-237
MSC (2000): Primary 05E15; Secondary 14M15, 14M12, 19E08.
DOI: https://doi.org/10.1090/S0894-0347-04-00473-4
Published electronically: November 18, 2004
MathSciNet review: 2114821
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a formula for the Grothendieck class of a quiver variety, which generalizes the cohomological component formulas of Knutson, Miller, and Shimozono. Our formula implies that the $K$-theoretic quiver coefficients have alternating signs and gives an explicit combinatorial formula for these coefficients. We also prove some new variants of the factor sequences conjecture and a conjecture of Knutson, Miller, and Shimozono, which states that their double ratio formula agrees with the original quiver formulas of the author and Fulton. For completeness we include a short proof of the ratio formula.


References [Enhancements On Off] (What's this?)

  • 1. S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type ${A}\sb{m}$, Boll. Un. Mat. Ital. Suppl. (1980), no. 2, 157-171. MR 0675498 (84e:16019)
  • 2. N. Bergeron and S. Billey, RC-graphs and Schubert polynomials, Experiment. Math. 2 (1993), no. 4, 257-269. MR 1281474 (95g:05107)
  • 3. N. Bergeron and F. Sottile, Schubert polynomials, the Bruhat order, and the geometry of flag manifolds, Duke Math. J. 95 (1998), no. 2, 373-423. MR 1652021 (2000d:05127)
  • 4. A. S. Buch, Supersymmetry of Grothendieck polynomial, in preparation.
  • 5. -, On a conjectured formula for quiver varieties, J. Algebraic Combin. 13 (2001), no. 2, 151-172. MR 1826950 (2002g:14074)
  • 6. -, Stanley symmetric functions and quiver varieties, J. Algebra 235 (2001), no. 1, 243-260. MR 1807664 (2001m:05257)
  • 7. -, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75-103. MR 1932326 (2003m:14018)
  • 8. -, A Littlewood-Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37-78. MR 1946917 (2003j:14062)
  • 9. A. S. Buch, L. M. Fehér, and R. Rimányi, Positivity of quiver coefficients through Thom polynomials, to appear in Adv. Math., 2003.
  • 10. A. S. Buch and W. Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), no. 3, 665-687. MR 1669280 (2000f:14087)
  • 11. A. S. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong, Stable Grothendieck polynomials and ${K}$-theoretic factor sequences, in preparation.
  • 12. A. S. Buch, A. Kresch, H. Tamvakis, and A. Yong, Schubert polynomials and quiver formulas, Duke Math. J. 122 (2004), no. 1, 125-143. MR 2046809
  • 13. -, Grothendieck polynomials and quiver formulas, To appear in Amer. J. Math., 2003.
  • 14. A. S. Buch, F. Sottile, and A. Yong, Quiver coefficients are Schubert structure constants, preprint, 2003.
  • 15. P. Edelman and C. Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42-99.MR 0871081 (88b:05012)
  • 16. L. Fehér and R. Rimányi, Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J. 114 (2002), 193-213.MR 1920187 (2003j:14005)
  • 17. S. Fomin and C. Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179-200, Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661368 (2000c:05149)
  • 18. S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proc. Formal Power Series and Alg. Comb. (1994), 183-190.
  • 19. -, The Yang-Baxter equation, symmetric functions, and Schubert polynomials, Discrete Math. 153 (1996), 123-143.MR 1394950 (98b:05101)
  • 20. W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381-420. MR 1154177 (93e:14007)
  • 21. W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle, Duke Math. J. 76 (1994), no. 3, 711-729. MR 1309327 (96j:14036)
  • 22. A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, to appear in Ann. of Math. (2), 2003.
  • 23. -, Subword complexes in Coxeter groups, Adv. Math. 184 (2004), 161-176. MR 2047852
  • 24. A. Knutson, E. Miller, and M. Shimozono, Four positive formulas for type $A$ quiver polynomials, preprint, 2003.
  • 25. V. Lakshmibai and P. Magyar, Degeneracy schemes, quiver schemes, and Schubert varieties, Internat. Math. Res. Notices 1998, no. 12, 627-640. MR 1635873 (99g:14065)
  • 26. A. Lascoux, Anneau de Grothendieck de la variété de drapeaux, The Grothendieck Festschrift, Vol. III, Birkhäuser Boston, Boston, MA, 1990, pp. 1-34. MR 1106909 (92j:14064)
  • 27. -, Transition on Grothendieck polynomials, Physics and combinatorics, 2000 (Nagoya), World Sci. Publishing, River Edge, NJ, 2001, pp. 164-179. MR 1872255 (2002k:14082)
  • 28. A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629-633. MR 0686357 (84b:14030)
  • 29. -, Décompositions dans l'algèbre des différences divisées, Discrete Math. 99 (1992), no. 1-3, 165-179. MR 1158787 (93c:20030)
  • 30. C. Lenart, S. Robinson, and F. Sottile, Grothendieck polynomials via permutation patterns and chains in the Bruhat order, preprint, 2003.
  • 31. E. Miller, Alternating formulae for $K$-theoretic quiver polynomials, to appear in Duke Math. J., 2003.
  • 32. J. R. Stembridge, A characterization of supersymmetric polynomials, J. Algebra 95 (1985), no. 2, 439-444. MR 0801279 (87a:11022)
  • 33. A. Yong, On combinatorics of quiver component formulas, to appear in J. Algebraic Combin., 2003.
  • 34. A. V. Zelevinskii, Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 199-200. MR 0783619 (86e:14027)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 05E15, 14M15, 14M12, 19E08.

Retrieve articles in all journals with MSC (2000): 05E15, 14M15, 14M12, 19E08.


Additional Information

Anders Skovsted Buch
Affiliation: Matematisk Institut, Aarhus Universitet, Ny Munkegade, 8000 Århus C, Denmark
Email: abuch@imf.au.dk

DOI: https://doi.org/10.1090/S0894-0347-04-00473-4
Keywords: Quiver variety, quiver coefficient, degeneracy locus, Grothendieck polynomial, Zelevinsky permutation, factor sequence
Received by editor(s): January 5, 2004
Published electronically: November 18, 2004
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society