Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Journal of the American Mathematical Society
Journal of the American Mathematical Society
ISSN 1088-6834(online) ISSN 0894-0347(print)

 

The failure of rational dilation on a triply connected domain


Authors: Michael A. Dritschel and Scott McCullough
Journal: J. Amer. Math. Soc. 18 (2005), 873-918
MSC (2000): Primary 47A25; Secondary 30C40, 30E05, 30F10, 46E22, 47A20, 47A48
Published electronically: June 2, 2005
MathSciNet review: 2163865
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For $R$ a bounded triply connected domain with boundary consisting of disjoint analytic curves there exists an operator $T$ on a complex Hilbert space $\mathcal H$ so that the closure of $R$ is a spectral set for $T$, but $T$ does not dilate to a normal operator with spectrum in $B$, the boundary of $R$. There is considerable overlap with the construction of an example on such a domain recently obtained by Agler, Harland and Raphael using numerical computations and work of Agler and Harland.


References [Enhancements On Off] (What's this?)

  • 1. M. B. Abrahamse and R. G. Douglas, A class of subnormal operators related to multiply-connected domains, Advances in Math. 19 (1976), no. 1, 106-148. MR 0397468 (53:1327)
  • 2. Jim Agler, Rational dilation on an annulus, Ann. of Math. (2) 121 (1985), no. 3, 537-563. MR 0794373 (87a:47007)
  • 3. -, On the representation of certain holomorphic functions defined on a polydisc, Topics in operator theory: Ernst D. Hellinger memorial volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 47-66. MR 1207393 (93m:47013)
  • 4. Jim Agler and John Harland, A monograph on function theory and Herglotz formulas for multiply connected domains.
  • 5. Jim Agler, John Harland, and Benjamin Raphael, Classical function theory, operator dilation theory, and machine computations on multiply-connected domains.
  • 6. Jim Agler and John E. McCarthy, Nevanlinna-Pick interpolation on the bidisk, J. Reine Angew. Math. 506 (1999), 191-204. MR 1665697 (2000a:47034)
  • 7. -, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 1882259 (2003b:47001)
  • 8. William Arveson, Subalgebras of $C\sp{\ast} $-algebras. II, Acta Math. 128 (1972), no. 3-4, 271-308. MR 0394232 (52:15035)
  • 9. William B. Arveson, Subalgebras of $C\sp{\ast} $-algebras, Acta Math. 123 (1969), 141-224. MR 0253059 (40:6274)
  • 10. Joseph A. Ball and Kevin F. Clancey, Reproducing kernels for Hardy spaces on multiply connected domains, Integral Equations Operator Theory 25 (1996), no. 1, 35-57. MR 1386327 (97f:46042)
  • 11. Joseph A. Ball and Tavan T. Trent, Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables, J. Funct. Anal. 157 (1998), no. 1, 1-61. MR 1637941 (2000b:47028)
  • 12. Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Operator theory and analysis (Amsterdam, 1997), Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89-138. MR 1846055 (2002f:47028)
  • 13. Joseph A. Ball and Victor Vinnikov, Hardy spaces on a finite bordered Riemann surface, multivariable operator model theory and Fourier analysis along a unimodular curve, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 37-56. MR 1882690 (2003f:47016)
  • 14. Stefan Bergman and Bruce Chalmers, A procedure for conformal mapping of triply-connected domains, Math. Comp. 21 (1967), 527-542. MR 0228663 (37:4243a)
  • 15. Kevin F. Clancey, Toeplitz operators on multiply connected domains and theta functions, Contributions to operator theory and its applications (Mesa, AZ, 1987), Oper. Theory Adv. Appl., vol. 35, Birkhäuser, Basel, 1988, pp. 311-355. MR 1017675 (91f:47038)
  • 16. -, Representing measures on multiply connected planar domains, Illinois J. Math. 35 (1991), no. 2, 286-311. MR 1091446 (92e:46110)
  • 17. John B. Conway, Functions of one complex variable, second ed., Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York, 1978. MR 0503901 (80c:30003)
  • 18. -, The theory of subnormal operators, Mathematical Surveys and Monographs, vol. 36, American Mathematical Society, Providence, RI, 1991. MR 1112128 (92h:47026)
  • 19. H. M. Farkas and I. Kra, Riemann surfaces, second ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765 (93a:30047)
  • 20. John D. Fay, Theta functions on Riemann surfaces, Springer-Verlag, Berlin, 1973, Lecture Notes in Mathematics, Vol. 352. MR 0335789 (49:569)
  • 21. Stephen D. Fisher, Function theory on planar domains, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1983, A second course in complex analysis, A Wiley-Interscience Publication. MR 0694693 (85d:30001)
  • 22. Helmut Grunsky, Lectures on theory of functions in multiply connected domains, Vandenhoeck & Ruprecht, Göttingen, 1978, Studia Mathematica, Skript 4. MR 0463413 (573365)
  • 23. Richard B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, New York, 1975, Graduate Texts in Mathematics, No. 24. MR 0410335 (53:14085)
  • 24. David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston Inc., Boston, MA, 1983, With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. MR 0688651 (85h:14026)
  • 25. -, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston Inc., Boston, MA, 1984, Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. MR 0742776 (86b:14017)
  • 26. Zeev Nehari, Conformal mapping, Dover Publications Inc., New York, 1975, Reprinting of the 1952 edition. MR 0377031 (51:13206)
  • 27. Vern Paulsen, Private communication.
  • 28. -, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867 (2004c:46118)
  • 29. Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow, 1986. MR 0868472 (88h:46111)
  • 30. Gilles Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), no. 2, 351-369. MR 1415321 (97f:47002)
  • 31. Donald Sarason, The $H\sp{p}$ spaces of an annulus, Mem. Amer. Math. Soc. No. 56 (1965), 78. MR 0188824 (32:6256)
  • 32. V. L. Vinnikov and S. I. Fedorov, On the Nevanlinna-Pick interpolation in multiply connected domains, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 254 (1998), no. Anal. Teor. Chisel i Teor. Funkts. 15, 5-27, 244. MR 1691394 (2000d:47031)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 47A25, 30C40, 30E05, 30F10, 46E22, 47A20, 47A48

Retrieve articles in all journals with MSC (2000): 47A25, 30C40, 30E05, 30F10, 46E22, 47A20, 47A48


Additional Information

Michael A. Dritschel
Affiliation: School of Mathematics and Statistics, Merz Court, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom
Email: m.a.dritschel@ncl.ac.uk

Scott McCullough
Affiliation: Department of Mathematics, University of Florida, Box 118105, Gainesville, Florida 32611-8105
Email: sam@math.ufl.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-05-00491-1
PII: S 0894-0347(05)00491-1
Keywords: Dilations, spectral sets, multiply connected domains, inner functions, Herglotz representations, Fay reproducing kernels, Riemann surfaces, theta functions, transfer functions, Nevanlinna-Pick interpolation
Received by editor(s): April 28, 2004
Published electronically: June 2, 2005
Additional Notes: The first author’s research was supported by the EPSRC
The second author’s research was supported by the NSF
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.