Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Configurations, braids, and homotopy groups


Authors: A. J. Berrick, F. R. Cohen, Y. L. Wong and J. Wu
Journal: J. Amer. Math. Soc. 19 (2006), 265-326
MSC (2000): Primary 20F36, 55Q40, 55U10; Secondary 20F12, 20F14, 57M50
DOI: https://doi.org/10.1090/S0894-0347-05-00507-2
Published electronically: November 18, 2005
MathSciNet review: 2188127
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main results of this article are certain connections between braid groups and the homotopy groups of the $ 2$-sphere. The connections are given in terms of Brunnian braids over the disk and over the $ 2$-sphere. The techniques arise from the natural structure of simplicial and $ \Delta$-structures on fundamental groups of configuration spaces.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Theorie der Zopfe, Hamburg Abh. 4 (1925), 47-72.
  • 2. E. Artin, Theory of Braids, Ann. of Math. 48 (1947), 101-126. MR 0019087 (8:367a)
  • 3. M.G. Barratt and P. J. Eccles, $ \Gamma^{+} $-structures-II: A recognition principle for infinite loop spaces, Topology 13 (1974), 113-126. MR 0348738 (50:1234b)
  • 4. D. J. Benson and F. R. Cohen, The mod $ 2$ cohomology of the mapping class group for a surface of genus two, Memoirs Amer. Math. Soc. 443 (1991), 93-104.MR 1052554 (91g:57002)
  • 5. S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), 471-486. MR 1815219 (2002a:20043)
  • 6. J. S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton Univ. Press, (1975). MR 0375281 (51:11477)
  • 7. C.-F. Bödigheimer, F. R. Cohen and M. D. Peim, Mapping class groups and function spaces, Contemp. Math. 271 (2001), 17-39. MR 1831345 (2002f:55036)
  • 8. R. Bott, Configuration spaces and embedding invariants, Turkish J. Math. 20 (1996), 1-17.MR 1392659 (97k:57008)
  • 9. R. Bott and A. S. Cattaneo, Integral invariants of $ 3$-manifolds, J. Diff. Geometry 48 (1998), 1-13.MR 1622602 (2000i:58040)
  • 10. A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457-479. MR 0267586 (42:2488)
  • 11. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector and J. W. Schlesinger, The mod-$ p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 0199862 (33:8002)
  • 12. G. E. Bredon, Topology and Geometry, Graduate Texts Math. 139, Springer (Berlin, 1993). MR 1224675 (94d:55001)
  • 13. G. Carlsson, A simplicial group construction for balanced products, Topology 23 (1985), 85-89. MR 0721454 (85e:55019)
  • 14. A. S. Cattaneo, P. Cotta-Ramusino and R. Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebraic and Geometric Topology 2 (2002), 949-1000.MR 1936977 (2004a:57014)
  • 15. E. Cech, Höherdimensionale homotopiegruppen, In: Verhandlungen des Internationalen Mathematikerkongress, Zürich, 1932, p.203. Orell Füssli (Zürich and Leipzig, 1932).
  • 16. F. R. Cohen, Homology of $ \Omega ^{n+1}\Sigma^{n+1}X$ and $ C_{n+1}(X)$, $ n>0$ , Bull. Amer. Math. Soc. 79 (1973), 1236-1241. MR 0339176 (49:3939)
  • 17. F. R. Cohen, On combinatorial group theory in homotopy, Contemp. Math. 188 (1995), 57-63.MR 1349129 (97d:55024)
  • 18. F. R. Cohen and J. Wu, Braid groups, free groups, and the loop space of the $ 2$-sphere, math.AT/0409307, preprint.
  • 19. F. R. Cohen, and J. Wu, On braid groups, free groups, and the loop space of the $ 2$-sphere, Proc. Skye Topology Conf., Progress in Math. 215 ( 2003), 93-105.MR 2039761 (2005b:55011)
  • 20. W. L. Chow, On algebraic braid group, Annals of Math. 49 (1948), 654-658.MR 0019088 (8:367b)
  • 21. E. B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971), 107-209.
  • 22. E. B. Curtis and M. Mahowald, The unstable Adams spectral sequence for $ S^{3}$, Contemp. Math. 96, Amer. Math. Soc. (Providence RI, 1989), 125-162. MR 1022678 (91b:55012)
  • 23. M. Davis, T. Januszkiewicz and R. Scott, Nonpositive curvature of blow-ups, Selecta Math. 4 (1998), 491-547. MR 1668119 (2001f:53078)
  • 24. H. Debrunner, Links of Brunnian type, Duke Math. J. 28 (1961), 17-23. MR 0137106 (25:562)
  • 25. S. Devadoss, Tessellations of moduli spaces and the mosaic operad, in Homotopy invariant algebraic structures, Contemp. Math. 239 (1998), 91-114.MR 1718078 (2000i:18014)
  • 26. E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 0141126 (25:4537)
  • 27. E. Fadell and J. Van Buskirk, The braid groups of $ E^{2}$ and $ S^{2}$, Duke Math. J. 29 (1962), 243-258. MR 0141128 (25:4539)
  • 28. M. Falk and R. Randell, The lower central series of a fibre-type arrangement, Invent. Math. 82 (1985), 77-88.MR 0808110 (87c:32015b)
  • 29. E. M. Feichtner, The integral cohomology algebra of ordered configuration spaces of spheres, Documenta Math. 5 (2000), 115-139.MR 1752611 (2002b:55031)
  • 30. Z. Feidorowicz and J-L. Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), 57-87. MR 0998125 (91j:18018)
  • 31. W. Fulton and R. MacPherson, Compactification of configuration spaces, Annals of Math. 139 (1994), 183-225. MR 1259368 (95j:14002)
  • 32. R. Gillette and Van Buskirk, The word problem and its consequences for the braid groups and mapping class groups of the $ 2$-sphere, Trans. Amer. Math. Soc. 131 (1968), 277-296.MR 0231894 (38:221)
  • 33. P. Hall, A contribution to the theory of groups of prime power order, Proc. London. Math. Soc. 2 (1936), 29-95.
  • 34. R. Hartshorne, Algebraic Geometry, Graduate Texts Math. 52, Springer (New York, 1977). MR 0463157 (57:3116)
  • 35. M.W. Hirsch, Differential Topology, Graduate Texts Math. 33, Springer (New York, 1976).MR 0448362 (56:6669)
  • 36. H. Hopf, Über die Topologie der Grunppenmannigfaltigkeiten und ihre Verallgemeinerungen, Annals of Math. (2) 42 (1941), 22-52.MR 0004784 (3:61b)
  • 37. W. Hurewicz, Beiträge zur Topologie der deformationen I-IV, Nederl. Akad. Wetensch. Proc. Ser. A 38 (1936), 117-126, 215-224.
  • 38. I. M. James, On the suspension sequence, Annals of Math. 65 (1957), 74-107.MR 0083124 (18:662e)
  • 39. D. L. Johnson, Towards a characterization of smooth braids, Math. Proc. Cambridge Philos. Soc. 92 (1982), 425-427.MR 0677467 (84c:20048)
  • 40. D. Kan, A combinatorial definition of homotopy groups, Annals of Math. 67 (1958), 288-312.MR 0111032 (22:1897)
  • 41. S. Keel, Intersection theory of moduli space of stable $ N$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574. MR 1034665 (92f:14003)
  • 42. F. Kirwan, Complex Algebraic Curves, LMS Student Texts 23, Cambridge Univ. Press (Cambridge, 1992).MR 1159092 (93j:14025)
  • 43. T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75. MR 0808109 (87c:32015a)
  • 44. T. Kohno, Vassiliev invariants and de Rham complex on the space of knots, in: Symplectic Geometry and Quantization, Contemp. Math. 179, Amer. Math. Soc. (Providence RI, 1994), 123-138. MR 1319605 (96g:57010)
  • 45. T. Kohno, Elliptic $ KZ$ system, braid groups of the torus and Vassiliev invariants, Topology and its Applications, 78 (1997), 79-94. MR 1465026 (2000c:57023)
  • 46. T. Kohno, Loop spaces of configuration spaces and finite type invariants, Geom. Topol. Monogr. 4 (2002), 143-160. MR 2002608 (2004g:55014)
  • 47. D. Krammer, Braid groups are linear, Annals of Math. 155 (2002), 131-156.MR 1888796 (2003c:20040)
  • 48. H. Levinson, Decomposable braids and linkages, Trans. Amer. Math. Soc. 178 (1973), 111-126.MR 0324684 (48:3034)
  • 49. C. Liang and K. Mislow, On Borromean links, J. Math. Chem. 16 (1994), 27-35. MR 1304179 (95j:57008)
  • 50. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, 2nd ed., Dover (New York, 1976). MR 0422434 (54:10423)
  • 51. B. Mangum and T. Stanford, Brunnian links are determined by their complements, Algebraic and Geometric Topology 1 (2001), 143-152. MR 1823496 (2002e:57009)
  • 52. J. P. May, Simplicial Objects in Algebraic Topology, Math. Studies 11, van Nostrand (Princeton NJ, 1967). MR 0222892 (36:5942)
  • 53. J. P. May, The Geometry of Iterated Loop Spaces, Lect. Notes in Math. 271, Springer (1972). MR 0420610 (54:8623b)
  • 54. J. Milnor, The geometric realization of a semi-simplicial complex, Annals of Math. 65 (1957), 357-362. MR 0084138 (18:815d)
  • 55. J. Milnor, On the construction $ F[K]$, Algebraic Topology - A Student Guide, by J. F. Adams, Cambridge Univ. Press, 119-136.
  • 56. J. C. Moore, Homotopie des complexes monöidéaux, Séminaire Henri Cartan (1954-55).
  • 57. H. Poincaré, Analysis situs, J. École Polytech. (2) 1 (1895), 1-121.
  • 58. D. E. Penney, Generalized Brunnian links, Duke Math. J. 36 (1969), 31-32. MR 0238302 (38:6578)
  • 59. D. G. Quillen, Homotopical algebra, Lect. Notes in Math. 43, Springer-Verlag (Berlin, 1967). MR 0223432 (36:6480)
  • 60. D. Rolfsen, Knots and Links, Math. Lect. Series 7, Publish or Perish (Berkeley, 1976).MR 0515288 (58:24236)
  • 61. T. Sato, On the group of morphisms of coalgebras, Ph.D. Thesis, Univ. Rochester, 2000.
  • 62. P. S. Selick, A decomposition of $ \pi _{*}(S^{2p+1};p)$, Topology 20 (1981), 175-177.MR 0605656 (82c:55017)
  • 63. P. Selick and J. Wu, On natural decompositions of loop suspensions and natural coalgebra decompositions of tensor algebras, Memoirs Amer. Math. Soc. 148 no. 701, (2000). MR 1706247 (2001c:55006)
  • 64. J-P. Serre, Homologie singulière des espaces fibrés. Applications, Annals of Math. (2) 54 (1951), 425-505. MR 0045386 (13:574g)
  • 65. J. H. Smith, Simplicial group models for $ \Omega^{n}\Sigma^{n}X$, Israel J. Math. 66 (1989), 330-350.MR 1017171 (91e:55014)
  • 66. E. H. Spanier, Algebraic Topology, McGraw-Hill (New York, 1966).MR 0210112 (35:1007)
  • 67. H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies 49, Princeton Univ. Press (Princeton, 1962).MR 0143217 (26:777)
  • 68. K. Whittlesey, Normal all pseudo-Anosov subgroups of mapping class groups, Geometry and Topology 4 (2000), 293-307.MR 1786168 (2001j:57022)
  • 69. J. Wu, On fibrewise simplicial monoids and Milnor-Carlsson's constructions, Topology 37 (1998), 1113-1134.MR 1650351 (99h:55030)
  • 70. J. Wu, Combinatorial descriptions of the homotopy groups of certain spaces, Math. Proc. Camb. Philos. Soc. 130 (2001), 489-513.MR 1816806 (2003e:55014)
  • 71. J. Wu, A braided simplicial group, Proc. London Math. Soc. 84 (2002), 645-662.MR 1888426 (2003e:20041)
  • 72. M.A. Xicoténcatl, Orbit Configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces, Ph.D. Thesis, Univ. Rochester (1997).
  • 73. M.A. Xicoténcatl, The Lie algebra of the pure braid group, Bol. Soc. Mat. Mexicana 6 (2000), 55-62. MR 1768508 (2001d:20036)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20F36, 55Q40, 55U10, 20F12, 20F14, 57M50

Retrieve articles in all journals with MSC (2000): 20F36, 55Q40, 55U10, 20F12, 20F14, 57M50


Additional Information

A. J. Berrick
Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
Email: berrick@math.nus.edu.sg

F. R. Cohen
Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
Email: cohf@math.rochester.edu

Y. L. Wong
Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
Email: matwyl@nus.edu.sg

J. Wu
Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge 117543, Singapore
Email: matwuj@nus.edu.sg

DOI: https://doi.org/10.1090/S0894-0347-05-00507-2
Keywords: Braid group, Brunnian braid, configuration space, crossed simplicial group, Moore complex, homotopy groups of spheres
Received by editor(s): April 28, 2003
Published electronically: November 18, 2005
Additional Notes: Research of the first, third, and last authors is supported in part by the Academic Research Fund of the National University of Singapore R-146-000-048-112 and R-146-000-049-112.
The second author is partially supported by the US National Science Foundation grant DMS 0072173 and CNRS-NSF grant 17149
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society