Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

$ L^p$ boundedness of discrete singular Radon transforms


Authors: Alexandru D. Ionescu and Stephen Wainger
Journal: J. Amer. Math. Soc. 19 (2006), 357-383
MSC (1991): Primary 11L07, 42B20
DOI: https://doi.org/10.1090/S0894-0347-05-00508-4
Published electronically: October 24, 2005
MathSciNet review: 2188130
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ K:\mathbb{R}^{d_1}\to\mathbb{C}$ is a Calderón-Zygmund kernel and $ P:\mathbb{R}^{d_1}\to\mathbb{R}^{d_2}$ is a polynomial of degree $ A\geq 1$ with real coefficients, then the discrete singular Radon transform operator

$\displaystyle T(f)(x)=\sum_{n\in\mathbb{Z}^{d_1}\setminus\{0\}}f(x-P(n))K(n) $

extends to a bounded operator on $ L^p(\mathbb{R}^{d_2})$, $ 1<p<\infty$. This gives a positive answer to an earlier conjecture of E. M. Stein and S. Wainger.


References [Enhancements On Off] (What's this?)

  • 1. G. I. Arkhipov and K. I. Oskolkov, On a special trigonometric series and its applications, Math. USSR-Sb. 62 (1989), 145-155. MR 0922412 (89a:42010)
  • 2. J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), 39-72.MR 0937581 (89f:28037a)
  • 3. J. Bourgain, On the pointwise ergodic theorem on $ L^p$ for arithmetic sets, Israel J. Math. 61 (1988), 73-84.MR 0937582 (89f:28037b)
  • 4. J. Bourgain, Pointwise ergodic theorems for arithmetic sets, with an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Etudes Sci. Publ. Math. 69 (1989), 5-45. MR 1019960 (90k:28030)
  • 5. M. Christ, Hilbert transforms along curves, I. Nilpotent groups, Ann. Math. 122 (1985), 575-596. MR 0819558 (87f:42039a)
  • 6. M. Christ, A. Nagel, E. M. Stein, and S. Wainger, Singular and maximal Radon transforms: analysis and geometry, Ann. Math. 150 (1999), 489-577. MR 1726701 (2000j:42023)
  • 7. K. deLeeuw, On $ L^p$ multipliers, Ann. Math. 81 (1965), 364-379. MR 0174937 (30:5127)
  • 8. E. Fabes, Singular integrals and partial differential equations of parabolic type, Studia Math. 28 (1966), 81-131.MR 0213744 (35:4601)
  • 9. M. Greenblatt, Boundedness of singular Radon transforms on $ L^p$ spaces under a finite-type condition, Amer. J. Math. 123 (2001), 1009-1053.MR 1867310 (2002i:44004)
  • 10. A. D. Ionescu, An endpoint estimate for the discrete spherical maximal function, Proc. Amer. Math. Soc. 132 (2004), 1411-1417.MR 2053347 (2005f:42042)
  • 11. A. Magyar, E. M. Stein, and S. Wainger, Discrete analogues in harmonic analysis: spherical averages, Ann. Math. 155 (2002), 189-208.MR 1888798 (2003f:42028)
  • 12. D. Müller, Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras, Invent. Math. 73 (1983), 467-489.MR 0718942 (85g:43004)
  • 13. A. Nagel, N. Riviere, and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), 395-403.MR 0450900 (56:9191b)
  • 14. A. Nagel, E. M. Stein, and S. Wainger, Hilbert transforms and maximal functions related to variable curves, in Harmonic Analysis in Euclidean Spaces (G. Weiss and S. Wainger, eds.), Part I, 95-98, Proc. Symp. Pure Math. 35, Amer. Math. Soc., Providence (1979).MR 0545242 (81a:42027)
  • 15. M. B. Nathanson, Additive Number Theory. The Classical Bases, Graduate Texts in Mathematics 164, Springer-Verlag, New York (1996). MR 1395371 (97e:11004)
  • 16. D. Oberlin, Two discrete fractional integrals, Math. Res. Lett. 8 (2001), 1-6. MR 1825254 (2002k:39015)
  • 17. D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. MR 0857680 (88i:42028a)
  • 18. J. L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Revista Matematica Iberoamericana 1 (1985), 1-14.MR 0850681 (87j:42057)
  • 19. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton (1993). MR 1232192 (95c:42002)
  • 20. E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.MR 0508453 (80k:42023)
  • 21. E. M. Stein and S. Wainger, Discrete analogues of singular Radon transforms, Bull. Amer. Math. Soc. 23 (1990), 537-544.MR 1056560 (92e:42010)
  • 22. E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis I: $ \ell^2$ estimates for singular Radon transforms, Amer. J. Math. 121 (1999), 1291-1336. MR 1719802 (2000j:42027)
  • 23. E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis II: fractional integration, J. Analyse Math. 80 (2000), 335-355. MR 1771530 (2001g:42038)
  • 24. E. M. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem, Math. Res. Lett. 8 (2001), 789-800. MR 1879821 (2002k:42038)
  • 25. E. M. Stein and S. Wainger, Two discrete fractional integral operators revisited, J. Analyse Math. 87 (2002), 451-479.MR 1945293 (2004a:39040)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 11L07, 42B20

Retrieve articles in all journals with MSC (1991): 11L07, 42B20


Additional Information

Alexandru D. Ionescu
Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706
Email: ionescu@math.wisc.edu

Stephen Wainger
Affiliation: Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706-1313
Email: wainger@math.wisc.edu

DOI: https://doi.org/10.1090/S0894-0347-05-00508-4
Keywords: Singular Radon transforms, discrete operators, orthogonality, square functions, exponential sums, the circle method
Received by editor(s): February 27, 2004
Published electronically: October 24, 2005
Additional Notes: The first author was supported in part by an NSF grant and an Alfred P. Sloan research fellowship
The second author was supported in part by an NSF grant
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society