Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Quasisymmetric groups


Author: Vladimir Markovic
Journal: J. Amer. Math. Soc. 19 (2006), 673-715
MSC (2000): Primary 20H10, 37F30
DOI: https://doi.org/10.1090/S0894-0347-06-00518-2
Published electronically: January 25, 2006
MathSciNet review: 2220103
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One of the first problems in the theory of quasisymmetric and convergence groups was to investigate whether every quasisymmetric group that acts on the sphere $ {\bf S}^{n}$, $ n>0$, is a quasisymmetric conjugate of a Möbius group that acts on $ {\bf S}^{n}$. This was shown to be true for $ n=2$ by Sullivan and Tukia, and it was shown to be wrong for $ n>2$ by Tukia. It also follows from the work of Martin and of Freedman and Skora. In this paper we settle the case of $ n=1$ by showing that any $ K$-quasisymmetric group is $ K_1$-quasisymmetrically conjugated to a Möbius group. The constant $ K_1$ is a function $ K$.


References [Enhancements On Off] (What's this?)

  • 1. W. Abikoff, C. Earle, S. Mitra, Barycentric extensions of monotone maps of the circle, Contemp. Math., Vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 1-20. MR 2145053
  • 2. B. Bowditch, A topological characterization of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643-667. MR 1602069 (99c:20048)
  • 3. A. Casson, D. Jungreis, Convergence groups and Seifert fibered $ 3$-manifolds, Invent. Math. 118 (1994), no. 3, 441-456. MR 1296353 (96f:57011)
  • 4. A. Douady, C. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), no. 1-2, 23-48. MR 0857678 (87j:30041)
  • 5. D. Epstein, V. Markovic, Extending homeomorphisms of the circle to quasiconformal homeomorphisms of the disc, Warwick preprints (2004).
  • 6. D. Epstein, A. Marden, V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305-336. MR 2052356 (2005d:30067)
  • 7. M. Freedman, R. Skora, Strange actions of groups on spheres, J. Differential Geom. 25 (1987), no. 1, 75-98. MR 0873456 (88a:57074)
  • 8. D. Gabai, Convergence groups are Fuchsian groups, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 395-402. MR 1102752 (92h:57056)
  • 9. F. Gehring, G. Martin, Discrete quasiconformal groups, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331-358. MR 0896224 (88m:30057)
  • 10. F. Gehring, G. Martin, Discrete convergence groups, Complex analysis, I (College Park, MD, 1985-86), 158-167, Lecture Notes in Math., 1275, Springer, Berlin (1987). MR 0922298 (89a:30014)
  • 11. F. Gehring, B. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199. MR 0437753 (55:10676)
  • 12. Z. He, O. Schramm, Fixed points, Koebe uniformization and circle packings Ann. of Math. 137, no. 2, 369-406 (1993). MR 1207210 (96b:30015)
  • 13. J. Heinonen, P. Koskela, Definitions of quasiconformality, Invent. Math. 120, 61-79 (1995). MR 1323982 (96e:30051)
  • 14. A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3) 51 (1985), no. 2, 318-338. MR 0794115 (87d:30021)
  • 15. A. Hinkkanen, Abelian and nondiscrete convergence groups on the circle, Trans. Amer. Math. Soc. 318 (1990), no. 1, 87-121. MR 1000145 (91g:30025)
  • 16. A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83 (1990). MR 0948926 (90d:30063)
  • 17. S. Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, (1992). MR 1177168 (93d:20088)
  • 18. O. Kozlovski, W. Shen, S. van Strien, Density of hyperbolicity in dimension one, Warwick preprints (2003).
  • 19. G. Martin, Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), no. 2, 179-202. MR 0853955 (89d:30025)
  • 20. G. Martin, P. Tukia, Convergence and Möbius groups, Holomorphic functions and moduli, Vol. II (1986), 113-140. MR 0955836 (89m:30095)
  • 21. C. Pommerenke, Boundary behavior of conformal maps, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag (1992). MR 1217706 (95b:30008)
  • 22. D. Smania, Puzzle geometry and rigidity, preprint (2002).
  • 23. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (1978), pp. 465-496. MR 0624833 (83f:58052)
  • 24. W. Thurston, Three-dimensional geometry and topology, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ (1997). MR 1435975 (97m:57016)
  • 25. P. Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 73-78. MR 0595178 (82c:30031)
  • 26. P. Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149-160. MR 0639972 (83b:30019)
  • 27. P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1-54. MR 0961162 (89m:30047)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20H10, 37F30

Retrieve articles in all journals with MSC (2000): 20H10, 37F30


Additional Information

Vladimir Markovic
Affiliation: University of Warwick, Institute of Mathematics, Coventry CV4 7AL, United Kingdom
Email: markovic@maths.warwick.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-06-00518-2
Received by editor(s): December 15, 2004
Published electronically: January 25, 2006
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society