Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Heegaard surfaces and measured laminations, II: Non-Haken 3-manifolds


Author: Tao Li
Journal: J. Amer. Math. Soc. 19 (2006), 625-657
MSC (2000): Primary 57N10, 57M50; Secondary 57M25
DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
Published electronically: February 3, 2006
MathSciNet review: 2220101
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A famous example of Casson and Gordon shows that a Haken 3-manifold can have an infinite family of irreducible Heegaard splittings with different genera. In this paper, we prove that a closed non-Haken 3-manifold has only finitely many irreducible Heegaard splittings, up to isotopy. This is much stronger than the generalized Waldhausen conjecture. Another immediate corollary is that for any irreducible non-Haken 3-manifold $ M$, there is a number $ N$ such that any two Heegaard splittings of $ M$ are equivalent after at most $ N$ stabilizations.


References [Enhancements On Off] (What's this?)

  • 1. Ian Agol and Tao Li An algorithm to detect laminar $ 3$-manifolds. Geom. Topol. 7 (2003) 287-309. MR 1988287 (2004e:57007)
  • 2. M. Boileau, D. J. Collins, and H. Zieschang, Genus $ 2$ Heegaard decompositions of small Seifert manifolds. Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 1005-1024. MR 1150575 (93d:57026)
  • 3. F. Bonahon and J. P. Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Sci. Ec. Norm. Sup. 16 (4) (1983) 451-466. MR 0740078 (85c:57010)
  • 4. Andrew Casson and Cameron Gordon, Reducing Heegaard splittings. Topology and Its Applications, 27, 275-283 (1987). MR 0918537 (89c:57020)
  • 5. Andrew Casson and Cameron Gordon, unpublished.
  • 6. William Floyd and Ulrich Oertel, Incompressible surfaces via branched surfaces. Topology 23 (1984), no. 1, 117-125. MR 0721458 (85a:57007)
  • 7. David Gabai, Foliations and $ 3$-manifolds. Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), 609-619. MR 1159248 (93d:57013)
  • 8. David Gabai and Ulrich Oertel, Essential laminations in $ 3$-manifolds. Ann. of Math. (2), 130 (1989), 41-73. MR 1005607 (90h:57012)
  • 9. Wolfgang Haken, Some results on surfaces in $ 3$-manifolds. Studies in Modern Topology, Math. Assoc. Amer., distributed by Pretice-Hall (1968), 34-98.MR 0224071 (36:7118)
  • 10. Allen Hatcher, Measured lamination spaces for surfaces, from the topological viewpoint. Topology and Its Applications 30 (1988), 63-88.MR 0964063 (89k:57022)
  • 11. Klaus Johannson, Heegaard surfaces in Haken $ 3$-manifolds. Bull. Amer. Math. Soc. 23 (1990), no. 1, 91-98. MR 1027902 (91d:57010)
  • 12. Klaus Johannson, Topology and combinatorics of $ 3$-manifolds. Lecture Notes in Mathematics, 1599, Springer-Verlag, Berlin, 1995.MR 1439249 (98c:57014)
  • 13. Tsuyoshi Kobayashi, A construction of $ 3$-manifolds whose homeomorphism classes of Heegaard splittings have polynomial growth. Osaka Journal of Mathematics 29 (1992), 653-674. MR 1192734 (93j:57007)
  • 14. Marc Lackenby, The asymptotic behaviour of Heegaard genus. Math. Res. Lett. 11 (2004), 139-149. MR 2067463 (2005d:57030)
  • 15. Tao Li, Laminar branched surfaces in $ 3$-manifolds. Geometry and Topology 6 (2002), 153-194. MR 1914567 (2003h:57019)
  • 16. Tao Li, Boundary curves of surfaces with the $ 4$-plane property. Geometry and Topology 6 (2002), 609-647. MR 1941725 (2003m:57039)
  • 17. Tao Li, An algorithm to find vertical tori in small Seifert fiber spaces. Preprint. arXiv: math.GT/0209107.
  • 18. Tao Li, Heegaard surfaces and measured laminations, I: The Waldhausen conjecture. Preprint. arXiv:math.GT; also available at: www2.bc.edu/~taoli/publications.html.
  • 19. Joseph Masters, William Menasco, and Xingru Zhang, Heegaard splittings and virtually Haken Dehn filling. New York J. Math. 10 (2004), 133-150. MR 2052369 (2005b:57040)
  • 20. William Menasco, Closed incompressible surfaces in alternating knot and link complements. Topology 23 (1984), no. 1, 37-44.MR 0721450 (86b:57004)
  • 21. John Morgan and Peter Shalen, Degenerations of hyperbolic structures, II: Measured laminations in $ 3$-manifolds. Annals of Math. 127 (1988), 403-456.MR 0932305 (89e:57010a)
  • 22. Yoav Moriah, Heegaard splittings of Seifert fibered spaces. Invent. Math. 91 (1988), 465-481.MR 0928492 (89d:57010)
  • 23. Yoav Moriah and Jennifer Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal. Topology 37 (1998), 1089-1112.MR 1650355 (99g:57021)
  • 24. Yoav Moriah, Saul Schleimer, and Eric Sedgwick, Heegaard splittings of the form H + nK, to appear in Communications in Analysis and Geometry, arXiv:math.GT/0408002.
  • 25. Ulrich Oertel, Measured laminations in $ 3$-manifolds. Trans. Amer. Math. Soc. 305 (1988), no. 2, 531-573. MR 0924769 (89d:57011)
  • 26. Parris, Pretzel Knots. Ph.D. Thesis, Princeton University (1978).
  • 27. Hyam Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for $ 3$-dimensional manifolds. Proc. Georgia Topology Conference, Amer. Math. Coc./Intl. Press, 1993. AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997, 1-20. MR 1470718 (98f:57030)
  • 28. Hyam Rubinstein and Martin Scharlemann, Comparing Heegaard splittings of non-Haken $ 3$-manifolds. Topology 35 (1996), no. 4, 1005-1026.MR 1404921 (97j:57021)
  • 29. Martin Scharlemann, Local detection of strongly irreducible Heegaard splittings. Topology and Its Applications 90 (1998), 135-147.MR 1648310 (99h:57040)
  • 30. Eric Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one stabilization. Math. Ann. 308 (1997), 65-72.MR 1446199 (98d:57019)
  • 31. Michelle Stocking, Almost normal surfaces in $ 3$-manifolds. Trans. Amer. Math. Soc. 352 (2000), 171-207. MR 1491877 (2000c:57045)
  • 32. Friedhelm Waldhausen, Heegaard-Zerlegungen der $ 3$-Sphäre. Topology 7 (1968), 195-203. MR 0227992 (37:3576)
  • 33. Friedhelm Waldhausen, Some problems on $ 3$-manifolds, Proc. Symp. Pure Math. 32 (1978), 313-322. MR 0520549 (80g:57013)
  • 34. Ying-Qing Wu, Dehn surgery on arborescent knots. J. Differential Geom. 43 (1996), no. 1, 171-197. MR 1424423 (97j:57013)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 57N10, 57M50, 57M25

Retrieve articles in all journals with MSC (2000): 57N10, 57M50, 57M25


Additional Information

Tao Li
Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts, 02167-3806
Email: taoli@bc.edu

DOI: https://doi.org/10.1090/S0894-0347-06-00520-0
Keywords: Heegaard splitting, measured lamination, non-Haken 3--manifold
Received by editor(s): November 24, 2004
Published electronically: February 3, 2006
Additional Notes: Partially supported by NSF grants DMS-0102316 and DMS-0406038
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society