Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Cayley groups

Authors: Nicole Lemire, Vladimir L. Popov and Zinovy Reichstein
Journal: J. Amer. Math. Soc. 19 (2006), 921-967
MSC (2000): Primary 14L35, 14L40, 14L30, 17B45, 20C10
Published electronically: February 6, 2006
MathSciNet review: 2219306
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical Cayley map, $ X \mapsto (I_n-X)(I_n+X)^{-1}$, is a birational isomorphism between the special orthogonal group SO$ _n$ and its Lie algebra $ {\mathfrak{s}o}_n$, which is SO$ _n$-equivariant with respect to the conjugating and adjoint actions, respectively. We ask whether or not maps with these properties can be constructed for other algebraic groups. We show that the answer is usually ``no", with a few exceptions. In particular, we show that a Cayley map for the group SL$ _n$ exists if and only if $ n \leqslant 3$, answering an old question of LUNA.

References [Enhancements On Off] (What's this?)

  • [BLB] C. BESSENRODT, L. LBRUYN, Stable rationality of certain $ PGL_n$-quotients, Invent. Math. 104 (1991), 179-199. MR 1094051 (92m:14060)
  • [BMT] G. BERHUY, M. MONSURRÒ, J.-P. TIGNOL, Cohomological invariants and $ R$-triviality of adjoint classical groups, Math. Z. 248 (2004), 313-323.MR 2088930 (2005i:11053)
  • [Bor] A. BOREL, Linear Algebraic Groups: Second Enlarged Edition, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, 1991. MR 1102012 (92d:20001)
  • [Bou1] N. BOURBAKI, Groupes et algèbres de Lie, Chap. II, III, Hermann, Paris, 1972. MR 0573068 (58:28083a)
  • [Bou2] N. BOURBAKI, Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [Bou3] N. BOURBAKI, Groupes et algèbres de Lie, Chap. VII, VIII, Hermann, Paris, 1975. MR 0453824 (56:12077)
  • [Br] K. S. BROWN, Cohomology of Groups, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, New York, 1982. MR 0672956 (83k:20002)
  • [Car] J. F. CARLSON, Modules and Group Algebras, Notes by R. SUTER, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.MR 1393196 (97c:20013)
  • [Ca] A. CAYLEY, Sur Quelques propriétés des déterminants gauches, J. Rein. Angew. Math. (Crelle) 32 (1846), 119-123. Reprinted in: The Coll. Math. Papers of Arthur Cayley, Vol. I, No. 52, Cambridge University Press, 1889, 332-336.
  • [Ch1] C. CHEVALLEY, On algebraic group varieties, J. Math. Soc. Japan 6 (1954), 303-324. MR 0067122 (16:672g)
  • [Ch2] C. CHEVALLEY, The Algebraic Theory of Spinors and Clifford Algebras, Springer, 1991. MR 1636473 (99f:01028)
  • [CW] G. CLIFF, A. WEISS, Summands of permutation lattices for finite groups, Proc. of the AMS 110 (1999), no. 1, 17-20. MR 1027091 (91d:20006)
  • [C-TS1] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, La $ {R}$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175-229. MR 0450280 (56:8576)
  • [C-TS2] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC, Principal homogeneous spaces under flasque tori: Applications, J. Algebra 106 (1987), 148-205. MR 0878473 (88j:14059)
  • [C-T] J.-L. COLLIOT-THÉLÈNE (with the collaboration of J.-J. Sansuc), The rationality problem for fields under linear algebraic groups (with special regards to the Brauer group), IX Escuela Latinoamericana de Mathemáticas, Santiago de Chile, July 1988.
  • [CK] A. CORTELLA, B. KUNYAVSKI, Rationality problem for generic tori in simple groups, J. Algebra 225 (2000), no. 2, 771-793. MR 1741561 (2001c:14070)
  • [CM] V. CHERNOUSOV, A. MERKURJEV, $ R$-equivalence and special unitary groups, J. Algebra 209 (1998), 175-198.MR 1652122 (99m:20101)
  • [CR] C. CURTIS, I. REINER, Methods of Representation Theory with Applications to Finite Groups and Orders, Vol. I, Reprint of the 1981 original, Wiley Classics Library, A Wiley Interscience Publication, John Wiley and Sons, Inc, New York, 1990. MR 1038525 (90k:20001)
  • [Di] J. DIEUDONNÉ, La géométrie des groupes classiques, Erg. Math. Grenzg., Bd. 5, Springer-Verlag, 1971. MR 0310083 (46:9186)
  • [Do] I. V. DOLGACHEV, Rationality of fields of invariants, in: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Amer. Math. Soc., Providence, RI, 1987, pp. 3-16. MR 0927970 (89b:14064)
  • [HK] M. HAJJA, M. C. KANG, Some actions of symmetric groups, J. Algebra 177 (1995), no. 2, 511-535. MR 1355213 (96i:20013)
  • [Hol] O. H¨OLDER, Die Gruppen der Ordnungen $ p^3$, $ pq^2$, $ pqr$, $ p^4$, Math. Ann. 43 (1893), 301-412. MR 1510814
  • [Isk1] V. A. ISKOVSKIKH, Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv. 14 (1980), no. 1, 17-39.MR 0525940 (80m:14021)
  • [Isk2] V. A. ISKOVSKIKH, Cremona group, in: Math. Encyclopaedia, Vol. 3, Sov. Encycl., Moscow, 1982, (in Russian), p.95.
  • [Isk3] V. A. ISKOVSKIKH, Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Russian Math. Surveys 51 (1996), no. 4, 585-652. MR 1422227 (97k:14016)
  • [Isk4] V. A. ISKOVSKIKH, Two non-conjugate embeddings of $ {\operatorname{S}}_3 \times {\mathbb{Z}}_2$ into the Cremona group, Proc. Steklov Inst. of Math. 241 (2003), 93-97. MR 2024046 (2004k:14022)
  • [Isk$ _5$] V. A. ISKOVSKIKH, Two non-conjugate embeddings of $ {\operatorname{S}}_3 \times {\mathbb{Z}}_2$ into the Cremona group, II, arXiv:math.AG/0508484.
  • [KM] B. KOSTANT, P. W. MICHOR, The generalized Cayley map for an algebraic group to its Lie algebra, in: The Orbit Method in Geometry and Physics (Marseille, 2000), Progr. Math., Vol. 213, Birkhäuser Boston, MA, 2003, pp. 259-296. MR 1995382 (2004h:20062)
  • [KMRT] M.-A. KNUS, A. MERKURJEV, M. ROST, J.-P. TIGNOL, The Book of Involutions, Colloquium Publications, Vol. 44, AMS, 1998. MR 1632779 (2000a:16031)
  • [Kn] M. KNESER, Lectures on Galois Cohomology of Classical Groups, Tata Inst. of Fund. Research Lectures on Math., Vol. 47, Bombay, 1969.MR 0340440 (49:5195)
  • [LB1] L. LBRUYN, Centers of generic division algebras, the rationality problem 1965-1990, Israel J. Math. 76 (1991), no. 1-2, 97-111. MR 1177334 (93f:16024)
  • [LB2] L. LBRUYN, Generic norm one tori, Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 401-407. MR 1378805 (97d:14070)
  • [LL] N. LEMIRE, M. LORENZ, On certain lattices associated with generic division algebras, J. Group Theory 3 (2000), no. 4, 385-405.MR 1790337 (2001h:16018)
  • [LPR] N. LEMIRE, V. L. POPOV, Z. REICHSTEIN, Cayley groups, Forschungsinstitut für Mathematik ETH Zürich preprint, August 2004.
  • [Lun1] D. LUNA, Sur la linéarité au voisinage d'un point fixe, Unpublished manuscript, May 1972.
  • [Lun2] D. LUNA, Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105.MR 0342523 (49:7269)
  • [Lun3] D. LUNA, Letter to V.L.Popov, January 18, 1975.
  • [Ma1] YU. I. MANIN, Rational surfaces over perfect fields II, Math. USSR, Sb. 1 (1968), 141-168.MR 0225781 (37:1374)
  • [Ma2] YU. I. MANIN, Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, Vol. 4. North-Holland Publ. Co., Amsterdam, London; Amer. Elsevier Publ. Co., New York, 1974. MR 0460349 (57:343)
  • [Me] A. MERKURJEV, $ R$-equivalence and rationality problem for semisimple adjoint classical algebraic groups, Publ. Math. IHES 46 (1996), 189-213. MR 1441008 (98d:14055)
  • [MFK] D. MUMFORD, J. FOGARTY, F. KIRWAN, Geometric Invariant Theory: Third Enlarged Edition, Erg. Math. Grenzg., 3 Folge, 34, Springer-Verlag, 1994. MR 1304906 (95m:14012)
  • [Pop1] V. L. POPOV, Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles, Math. USSR-Izv. 8 (1974), 301-327.MR 0357399 (50:9867)
  • [Pop2] V. L. POPOV, Letter to D.Luna, March 12, 1975.
  • [Pop3] V. L. POPOV, Sections in invariant theory, in: The Sophus Lie Memorial Conference (Oslo, 1992), Scand. Univ. Press, Oslo, 1994, pp. 315-361.MR 1456471 (98d:14058)
  • [PV] V. L. POPOV, E. B. VINBERG, Invariant Theory, in: Algebraic Geometry IV, Encycl. Math. Sci., Vol. 55, Springer-Verlag, 1994, pp. 123-284. MR 1100485 (92d:14010)
  • [Pos] M. POSTNIKOV, Lie Groups and Lie Algebras. Lectures in Geometry. Semester V, Mir, Moscow, 1986. MR 0905471 (88f:22002)
  • [Sa] D. J. SALTMAN, Invariant fields of linear groups and division algebras, in: Perspectives in Ring Theory, Antwerp, 1987, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 279-297. MR 1048416 (91f:20053)
  • [Se] J.-P. SERRE, Espaces fibrés algébriques, in: Séminaire C. Chevalley E.N.S., 1958, Anneaux de Chow et applications, Exposé no. 1, Secr. math. 11 rue Pierre Curie, Paris 5e, 1958, 1-01- 1-37. Reprinted in: Exposés de Séminaires 1950-1999, Doc. Math. 1, Soc. Math. France, 2001, 107-139.
  • [Sh] I. R. SHAFAREVICH, Basic Algebraic Geometry, Vol. 1, Second Ed., Springer-Verlag, Berlin, 1994. MR 1328833 (95m:14001)
  • [Spe] A. SPEISER, Zahlentheoretische Sätze aus der Gruppentheorie, Math. Zeitschrift 5 (1919), 1-6. MR 1544369
  • [Spr] T. A. SPRINGER, Linear Algebraic Groups: Second Ed., Progress in Math., Vol. 9, Birkhäuser, 1998. MR 1642713 (99h:20075)
  • [Sw] R. G. SWAN, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148-158. MR 0244215 (39:5532)
  • [Vos] V. E. VOSKRESENSKI, Algebraic Groups and Their Birational Invariants, AMS, Providence, RI, 1998. MR 1634406 (99g:20090)
  • [VK] V. E. VOSKRESENSKI, A. A. KLYACHKO, Toroidal Fano varieties and root systems, Math. USSR-Izv. 24 (1985), 221-244.MR 0740791 (85k:14024)
  • [Weib] C. A. WEIBEL, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)
  • [Weil] A. WEIL, Algebras with involution and the classical groups, J. Indian Math. Soc. (N.S.) 24 (1961), 589-623. MR 0136682 (25:147)
  • [Weyl] H. WEYL, The Classical Groups, Their Invariants and Representations, Princeton, N.J., Princeton Univ. Press, 1935.MR 0000255 (1:42c)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14L35, 14L40, 14L30, 17B45, 20C10

Retrieve articles in all journals with MSC (2000): 14L35, 14L40, 14L30, 17B45, 20C10

Additional Information

Nicole Lemire
Affiliation: Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada

Vladimir L. Popov
Affiliation: Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow 119991, Russia

Zinovy Reichstein
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

Keywords: Algebraic group, Lie algebra, reductive group, algebraic torus, Weyl group, root system, birational isomorphism, Cayley map, rationality, cohomology, permutation lattice
Received by editor(s): January 14, 2005
Published electronically: February 6, 2006
Additional Notes: The first and last authors were supported in part by NSERC research grants. The second author was supported in part by ETH, Zürich, Switzerland, Russian grants \Russian{RFFI 05–01–00455, NSH–123.2003.01}, and a (granting) program of the Mathematics Branch of the Russian Academy of Sciences.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society