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WEIL-PETERSSON VOLUMES AND INTERSECTION THEORY
ON THE MODULI SPACE OF CURVES

MARYAM MIRZAKHANI

1. Introduction

In this paper, we establish a relationship between the Weil-Petersson volume
Vg,n(b) of the moduli space Mg,n(b) of hyperbolic Riemann surfaces with geodesic
boundary components of lengths b1, . . . , bn, and the intersection numbers of tauto-
logical classes on the moduli space Mg,n of stable curves. As a result, by using the
recursive formula for Vg,n(b) obtained in [22], we derive a new proof of the Virasoro
constraints for a point. This result is equivalent to the Witten-Kontsevich formula
[14].

Intersection theory of Mg,n. Let Mg,n be the moduli space of genus g curves
with n distinct marked points and Mg,n its Deligne-Mumford compactification.
The space Mg,n is a connected complex orbifold of dimension 3g−3+n [9]. These
moduli spaces are endowed with natural cohomology classes. An example of such a
class is the Chern class of a vector bundle on the moduli space. There are n tautolog-
ical line bundles defined over Mg,n: for each marked point i, there exists a canonical
line bundle Li in the orbifold sense whose fiber at the point (C, x1, . . . , xn) ∈ Mg,n

is the cotangent space of C at xi. The first Chern class of this bundle is denoted
by ψi = c1(Li). Note that although the complex curve C may have nodes, xi never
coincides with the singular points.

For any set {d1, . . . , dn} of integers define the top intersection number of ψ classes
by

〈τd1 , . . . , τdn
〉g =

∫
Mg,n

n∏
i=1

ψdi
i .

Such products are well defined when the di’s are nonnegative integers and
n∑

i=1

di =

3g − 3 + n. In other cases 〈τd1 , . . . , τdn
〉g is defined to be zero. Since we are in the

orbifold setting, these intersection numbers are rational numbers. See [15] and [9]
for more details.

Introduce formal variables ti, i ≥ 0, and define Fg, the generating function of all
top intersections of ψ classes in genus g, by

Fg(t0, t1, . . .) =
∑
{di}

〈
∏

τdi
〉g

∏
r>0

tnr
r /nr!,
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where the sum is over all sequences of nonnegative integers {di} with finitely many
nonzero terms, and nr = Card(i : di = r). The generating function

F =
∞∑

g=0

λ2g−2Fg

arises as a partition function in two-dimensional quantum gravity.
Witten [28] conjectured a recursive formula for the intersections of tautological

classes in the form of KdV differential equations satisfied by F . Witten’s conjecture
implies that eF is annihilated by a sequence of differential operators

L−1, L0, . . . , Ln, . . .

satisfying the Virasoro relations

[Lm, Lk] = (m − k)Lm+k.

See [5] and [1]. Also, for the definition of the Li’s, see §6.
The Virasoro constraints determine the intersection numbers of tautological line

bundles in all genera.
In [14], Kontsevich introduces a matrix model as the generating function for the

intersection numbers on the moduli space to prove Witten’s conjecture by express-
ing intersection numbers in terms of sums over ribbon graphs. Also, A. Okounkov
and R. Pandharipande gave a different proof by using the relation between the
Gromov-Witten theory of P1 and Hurwitz numbers [25]. For expository accounts
of these proofs, see [15] and [24].

In this paper we prove that F , the generating function of the intersection num-
bers, satisfies the Virasoro constraints. Our proof relies on the Weil-Petersson
symplectic geometry of the moduli space of curves and results of G. McShane [20]
on lengths of simple closed geodesics on hyperbolic surfaces.

Weil-Petersson geometry of Mg,n. The key tool for obtaining the recursive
formula for the intersections of the tautological classes is understanding the rela-
tionship between the tautological classes and the Weil-Petersson symplectic form.

This form is the symplectic form of a Kähler, noncomplete metric on the moduli
space of curves introduced by A. Weil [10]. In [18], Masur obtained growth estimates
for the coefficients of the Weil-Petersson metric close to the boundary of the moduli
space. In [33], Wolpert showed that the Weil-Petersson symplectic form has a
simple expression in terms of the Fenchel-Nielsen twist-length coordinates (see §2).
Moreover, he showed that the Weil-Petersson Kähler form ωWP extends as a closed
form to Mg,n and defines a cohomology class [ω] ∈ H2(Mg,n, R). See §2 for more
details.

Volumes of moduli spaces of bordered Riemann surfaces. The Weil-
Petersson volume of the moduli space Mg,n is a finite number and its value as
a function of g and n arises naturally in different contexts.

In order to integrate certain types of geometric functions over the moduli space
[22], we find it fruitful to consider more generally the moduli space Mg,n(b1, . . . , bn)
of hyperbolic bordered Riemann surfaces with the geodesic boundary components
β1, . . . , βn of length b1, . . . , bn. We calculate the Weil-Petersson volume Vg,n(b) of
the moduli space Mg,n(b) using two different methods.

(I): In [22], we approach the study of the volumes of these moduli spaces via
the length functions of simple closed geodesics on a hyperbolic surface and show
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that Vg,n(b) is a polynomial in b. We also give an explicit recursive method for
calculating these polynomials (see §5).

(II): In §4, we use the symplectic geometry of moduli spaces of bordered Rie-
mann surfaces to calculate these volumes. This method allows us to read off the
intersection numbers of tautological line bundles from the volume polynomials.

(I): A recursive formula for volumes. By using an identity for lengths of
simple closed geodesics on a bordered Riemann surface which generalizes the result
in [20], we obtain a recursive formula for Vg,n(b) in terms of Vg1,n1(b)’s where
2g1 + n1 < 2g + n (see equation (5.5)).

As a result, we establish:

Theorem 1.1. The volume Vg,n(b) = Vol(Mg,n(b1, . . . , bn)) is a polynomial in
b1, . . . , bn, namely:

Vg,n(b) =
∑

|α|≤3g−3+n

Cg(α) · b 2α,

where Cg(α) > 0 lies in π6g−6+2n−2|α| · Q.

Here the exponent α = (α1, . . . , αn) ranges over elements in (Z≥0)n, bα =
bα1
1 · · · bαn

n , and |α| =
∑n

i=1 αi.

(II): Symplectic geometry of Mg,n(b). To understand the symplectic geometry
of Mg,n(b), we study a natural Tn-bundle over the compactification of this space.
The space Mg,n(b) has a natural orbifold structure. Moreover, the tautological
line bundle Li over Mg,n can be generalized to the following circle bundle (in the
orbifold sense) over Mg,n(b):

S1 −−−−→ {(X, p) | p ∈ βi, X ∈ Mg,n(b)}⏐⏐�
Mg,n(b)

where S1 acts by moving the point p on βi. This shows that Mg,n(b) is a reduced
space. Hence we can use the method of symplectic reduction, discussed in §3,
to relate the volumes of moduli spaces of curves to the intersection numbers of
tautological classes Mg,n (§4).

Note that the picture is a bit different when g = n = 1, in which case all elements
of M1,1(b) have nontrivial automorphisms of order 2; namely, every X ∈ M1,1(b)
comes with an elliptic involution.

When (g, n) �= (1, 1), a generic element of Mg,n(b) does not have any non trivial
automorphism which leaves the boundary components setwise fixed. In this case,
the coefficient Cg(α) in Theorem 1.1 is given by

(1.1) Cg(α) =
1

2|α| |α|! (3g − 3 + n − |α|)!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α|,

where ψi is the first Chern class of the i-th tautological line bundle, ω is the Weil-
Petersson symplectic form, α! =

∏n
i=1 αi!, and |α| =

∑n
i=1 αi.
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Remark. By a result of Wolpert [31],

κ1 =
[ω]
2π

,

where κ1 is the first Mumford tautological class on Mg,n.

Examples. Using the recursive formula in Section 5, one can show that

V0,4(b1, b2, b3, b4) =
1
2
(4π2 + b2

1 + b2
2 + b2

3 + b2
4).

Therefore, we have
Vol(M0,4) = 2π2

and ∫
M0,4

ψ1 = 1.

Also, it can be shown that

V2,1(b1) =
(4π2 + b2

1) · (12π2 + b2
1) · (6960 π2 + 384 π2b2

1 + 5 b4
1)

2211840
,

which implies that ∫
M2,1

ψ4
1 =

24 · 4! · 5
2211840

=
1

242 · 2 .

Remark. It is known [11] that, in general,∫
Mg,1

ψ3g−2
1 =

1
24g · g!

.

A closed formula for V0,n(0), the Weil-Petersson volume of M0,n, is known [34].
Also see [17], [26], and [12] for different results on Weil-Petersson volumes. Note
that there is a small difference in the normalization of the volume form; in [34] the
Weil-Petersson Kähler form is 1/2 the imaginary part of the Weil-Petersson pairing,
while here the factor 1/2 does not appear. So our answers are different by a power
of 2.

There is an exceptional case which arises for g = n = 1. In this case a generic
X ∈ M1,1 has a symmetry of order 2 which acts nontrivially on the cotangent space
of X at the marked point. See [28]. Therefore, the integral of ψ1 is half of what
equation (1.1) predicts. In §5, we show that

V1,1(b) = b2/24 + π2/6.

Hence, we get
Vol(M1,1) = π2/6

and ∫
M1,1

ψ1 =
1
2
× 1

12
=

1
24

,

which agree with the known results [9].

The main result. By combining equation (1.1) and the recursive formula for
the Vg,n(b)’s obtained in [22], we prove that the generating function for all top
intersections of ψ classes in all genera satisfies the Virasoro constraints (§6).
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Analogies with moduli spaces of stable bundles. The discussion above sug-
gests some similarities between Mg,n and the variety Hom(π1(S), G)/G of represen-
tations of the fundamental group of the oriented surface S in a compact Lie group
G, up to conjugacy. This space is naturally equipped with a symplectic structure
[6]. For G = SU(2), the representation variety is identified with the moduli space
of semi-stable holomorphic rank 2 vector bundles over a fixed Riemann surface.
For θ1, . . . , θn ∈ G let

Rg,n(θ1, . . . , θn)

be the variety of representations of π1(Sg,n) in SU(2) such that the monodromy
around βi lies in the conjugacy class of θi. Here, fixing the conjugacy class of the
monodromy around a boundary component β corresponds to fixing the length of β
in the case of Mg,n(b).

As in our argument for proving Theorem 6.1, it is possible to derive recursive
formulas for intersection numbers of line bundles on Rg,n by relating these numbers
to the symplectic volume of Rg,n(θ1, . . . , θn). This approach was first suggested by
Witten [29], and also used in [27].

An important difference is that the action of the mapping class does not enter in
the Rg,n case. The space Rg,n is analogous to Teichmüller space, but it has finite
volume. Also, the action of the mapping class group on Rg,n(θ) is ergodic [7].

2. Background material

In this section, we briefly summarize basic background material in the Te-
ichmüller theory of Riemann surfaces with geodesic boundary components. For
further background, see [10] and [4].

Teichmüller space. Let S be an oriented smooth surface of negative Euler char-
acteristic. A point in the Teichmüller space T (S) is a complete hyperbolic surface
X equipped with a diffeomorphism f : S → X. The map f provides a marking on
X by S. Two marked surfaces f : S → X and g : S → Y define the same point in
T (S) if and only if f ◦ g−1 : Y → X is isotopic to a conformal map. When ∂S is
nonempty, consider hyperbolic Riemann surfaces homeomorphic to S with geodesic
boundary components of fixed length. Let A = ∂S and b = (bα)α∈A ∈ R

|A|
+ . A point

X ∈ T (S, b) is a marked hyperbolic surface with geodesic boundary components
such that for each boundary component β ∈ ∂S, we have

�β(X) = bβ .

Let Sg,n be an oriented smooth connected surface of genus g with n boundary
components (β1, . . . , βn). Then the Teichmüller space of hyperbolic structures on
Sg,n with geodesic boundary components of length b1, . . . , bn is defined by

Tg,n(b1, . . . , bn) = T (Sg,n, b1, . . . , bn).

Let Mod(S) denote the mapping class group of S, or the group of isotopy classes of
orientation-preserving self-homeomorphisms of S leaving each boundary component
setwise fixed. The mapping class group Modg,n = Mod(Sg,n) acts on Tg,n(b) by
changing the marking. The quotient space

Mg,n(b) = M(Sg,n, �βi
= bi) = Tg,n(b1, . . . , bn)/ Modg,n
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is the moduli space of Riemann surfaces homeomorphic to Sg,n with n boundary
components of length �βi

= bi. By convention, a geodesic of length zero is a cusp,
and we have

Tg,n = Tg,n(0, . . . , 0)
and

Mg,n = Mg,n(0, . . . , 0).

For a disconnected surface S =
k⋃

i=1

Si such that Ai = ∂Si ⊂ ∂S, we have

M(S, b) =
k∏

i=1

M(Si, bAi
),

where bAi
= (bs)s∈Ai

.

The Weil-Petersson symplectic form. Recall that a symplectic form on a man-
ifold M is a nondegenerate closed 2-form ω ∈ Ω2(M). The n-fold wedge product

1
n!

ω ∧ · · · ∧ ω

never vanishes, and defines a volume form on M . By work of Goldman [6], the space
Tg,n(b1, . . . , bn) carries a natural symplectic form invariant under the action of the
mapping class group. This symplectic form is called the Weil-Petersson symplectic
form, and denoted by ω or ωwp. We investigate the volume of the moduli space
with respect to the volume form induced by the Weil-Petersson symplectic form. If
S is disconnected, then

Vol(M(S, b)) =
k∏

i=1

Vol(M(Si, bAi
)).

When L = 0, there is a natural complex structure on Tg,n, and this symplectic form
is in fact the Kähler form of a Kähler metric [10].

The Fenchel-Nielsen coordinates. A pants decomposition of S is a set of disjoint
simple closed curves which decomposes the surface into pairs of pants. Fix a system
of pants decomposition of Sg,n, P = {αi}k

i=1, where k = 3g − 3 + n. For a marked
hyperbolic surface X ∈ Tg,n(b), the Fenchel-Nielsen coordinates associated with
P, {�α1(X), . . . , �αk

(X), τα1(X), . . . , ταk
(X)}, consist of the set of lengths of all

geodesics used in the decomposition and the set of the twisting parameters used to
glue the pieces [10]. There is an isomorphism

Tg,n(b) ∼= RP
+ × RP

by the map
X → (�αi

(X), ταi
(X))k

i=1.

By work of Wolpert, the Weil-Petersson symplectic structure has a simple form in
Fenchel-Nielsen coordinates [30].

Theorem 2.1 (Wolpert). The Weil-Petersson symplectic form is given by

ωwp =
k∑

i=1

d�αi
∧ dταi

.
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Twisting. Given a simple closed geodesic α on X ∈ Tg,n(b), and t ∈ R, we can
deform the hyperbolic structure of X by a right twist along α as follows. First,
cut X along α, and then reglue back after twisting distance t to the right. We
observe that the hyperbolic structure of the complement of the cut extends to a new
hyperbolic structure twtα(X) on S. The resulting continuous path in Teichmüller
space is the Fenchel-Nielsen deformation of X along α which is generated by the
Fenchel-Nielsen vector field. For t = �α(X), we have

twtα(X) = φα(X),

where φα ∈ Mod(Sg,n) is a right Dehn twist along α. It is known that the vector
field generated by twisting around α is symplectically dual to the exact 1-form d�α;
as a consequence of Theorem 2.1 [30], we have

Corollary 2.2. The right twist flow defined by

t → twtα(X)

is the Hamiltonian flow of the length function of α with respect to the Weil-Petersson
symplectic form.

Compactification of the moduli space. The Deligne-Mumford compactifica-
tion Mg,n of the moduli space Mg,n [9] can be constructed by adjoining hyperbolic
surfaces with simple closed geodesics of length zero.

By work of Wolpert [33], the Weil-Petersson symplectic form extends smoothly
to the boundary with respect to the Fenchel-Nielsen coordinates. This form is
closed and everywhere nondegenerate and therefore defines a symplectic form on
Mg,n(b). In [32] Wolpert showed that ω/π2 ∈ H2(Mg,n, Q), and by multiplying
[ω]/π2 by some integer, we get a positive line bundle over Mg,n. As a result, Mg,n

is a projective algebraic variety. See [32] for more details.
In a similar way, we can compactify the space Mg,n(b) by allowing �γ = 0 for a

simple closed geodesic γ inside the surface. When b �= 0, the moduli space Mg,n(b)
does not have a natural complex structure. Nevertheless it has a real-analytic
structure induced by the Fenchel-Nielson coordinates [33]. As was pointed out to
the author by the referee, the approach of describing stable nodal curves in terms
of hyperbolic surfaces first appeared in a paper by Bers [2].

Orbifold structure of the moduli space. Since the action of the mapping
class group on Teichmüller space can have fixed points, the space Mg,n(b) is not
always a manifold. But a complete hyperbolic surface can only have finitely many
automorphisms. So the moduli space has a natural orbifold structure. The orbifold
points of the moduli space correspond exactly to the Riemann surfaces where the
automorphism group is nontrivial. We remark that a Riemann surface X ∈ M0,n

does not have nontrivial automorphisms. Therefore, the moduli space M0,n is a
manifold. In general, the moduli space Mg,n(b) is a compact orbifold, and the
Deligne-Mumford compactification locus, Mg,n(b)−Mg,n(b), is a union of finitely
many lower-dimensional suborbifolds intersecting transversely [9].

To apply results known for manifolds in our setting (e.g. Corollary 3.3), it suffices
to show that Mg,n(b) has a finite cover with no orbifold points; the finite cover can
be chosen as

Tg,n(b)/H,

where H is a torsion-free subgroup of Modg,n.
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More precisely, each finite quotient group G of the mapping class group deter-
mines a Galois cover Mg,n(b)[G] → Mg,n(b), and as proved in [16] and [3], we
have

Theorem 2.3. There exists a finite group G such that Mg,n(b)[G] is a smooth
manifold, and the compactification locus is a union of codimension-2 submanifolds.

This theorem allows us to use results of the next section on symplectic reduction
and apply them to the moduli spaces of curves.

Coverings and volume forms of the Mg,n(b)’s. Let γ1, γ2, . . . γk be a set of
disjoint simple closed curves on Sg,n, and Γ = (γ1, . . . , γk). Then g ∈ Modg,n acts
on Γ by

g · Γ = (g · γ1, . . . , g · γk).

Let OΓ be the set of homotopy classes of elements of the set Mod ·Γ. Consider
Mg,n(b)Γ defined by the following space of pairs:

{(X, η)| X ∈ Mg,n(b) , η = (η1, . . . , ηk) ∈ OΓ, ηi’s are closed geodesics on X}.

Let πΓ : Mg,n(b)Γ → Mg,n(b) be the projection map defined by

πΓ(X, η) = X.

Then we have
Mg,n(b)Γ = Tg,n(b)/GΓ,

where

GΓ =
s⋂

i=1

Stab(γi) ⊂ Mod(Sg,n).

The Weil-Petersson symplectic structure on Teichmüller space is invariant un-
der the action of the mapping class group. Hence Mg,n(b)Γ carries a symplectic
structure defined by πΓ∗(ωwp).

3. Symplectic reduction

In this section we recall some definitions and known results about symplectic
geometry of symplectic quotients [13] and Chern-Weil theory of principal circle
bundles [21]. For an interesting exposition of general ideas surrounding symplectic
quotients and some applications see [8].

3.1. Principal S1-bundles. Let P and M be smooth manifolds, and π : P → M
be a map of P onto M . If there is an S1 action on P , then we say (P, S1, M) is a
Principal S1-bundle if

(1) S1 acts freely on P ;
(2) π(p1) = π(p2) if and only if there exists g ∈ S1 such that p1 · g = p2;
(3) P is locally trivial over M.

A connection on a principal S1-bundle is a smooth distribution H on P such that

(1) TpP = Hp

⊕
Vp , Vp = ker π∗, and

(2) g∗Hp = Hp·g.
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Vectors in Hp are called horizontal. For v ∈ TpP , we denote the horizontal part
by Hv. A connection is uniquely determined by an invariant 1-form A such that
A(X) = 1, where X is the vector field generating the S1 action. We can choose the
1-form defined by

A(v) =
〈v, X〉
〈X, X〉 ,

where 〈 , 〉 is an S1-invariant metric on P .
Given a p-form ω on P , define Dω by

Dω(v1, . . . , vp+1) = dω(Hv1, . . . , Hvp+1).

If A is the connection form of H, Φ = D(A) is called the curvature form of H.
Then the following result holds.

Lemma 3.1. There exists a unique closed 2-form Ω on M such that Φ = π∗Ω.
Moreover, the cohomology class of Ω is independent of the choice of the connection
form, and

c1(P ) = [Ω] ∈ H2(M, Z).

See [19] and [21] for more details.

3.2. Moment map. Let (M, ω) be a symplectic manifold. The Hamiltonian vector
field ξH generated by the function H : M → R is the vector field determined by

ω(ξH , .) = dH(.).

Suppose that a compact Lie group G with Lie algebra g acts smoothly on M and
preserves the symplectic form ω. This action gives rise to an infinitesimal action
of g associating to every ξ ∈ g a vector field ξ#. The moment map µ : M → g∗ is
defined by

dµ(Y )(X) = ω(X#, Y ),

where Y is a vector field on M . In other words, the map µξ : M → R defined so
that

µξ(m) = µ(m) · ξ

is a Hamiltonian function for the vector field on M induced by ξ. Assume that the
map µ is proper. Because the moment map µ is G-invariant, G acts on each level
set of µ. The reduced space is the quotient

Ma = µ−1(a)/G

for any a = (a1, . . . , an) in the image of µ. The space Ma inherits a symplectic
form ωa from the symplectic structure on M.

Remark. If 0 is a regular value of µ, by the coisotropic embedding theorem there
is a neighborhood of µ−1(0) on which the symplectic form is given in a standard
form [8]. This is a generalization of Darboux’s theorem stating that symplectic
manifolds do not have any local invariants ([19]).
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3.3. Variation of the reduced form and volume. When a is close to 0, Ma is
diffeomorphic to M0. It is important to know how the symplectic geometry of Ma

varies when one varies a.
When G = Tn = Sn

1 , the action of G on the level set µ−1(a) gives rise to n circle
bundles, C1, . . . , Cn defined over Ma.

Tn −−−−→ µ−1(a) −−−−→ M⏐⏐�
Ma = µ−1(a)/Tn

Fix a connection α on µ−1(0). Then the following result shows that wa varies
linearly in a [8].

Theorem 3.2 (Normal form theorem). The space (Ma, wa) is symplectomorphic
to M0 equipped with the symplectic form w0 + aΩ, where Ω is the curvature form
of the connection α.

For a = (a1, . . . , an) with |a| ≤ ε, Ma and M0 are diffeomorphic. Since c1(C) =
[Ω], under this diffeomorphism the cohomology classes of the symplectic forms are
related by

[wa] = [w] +
n∑

i=1

ai · [φi],

where φi = c1(Ci).

Remark. This theorem is closely related to a version of the Duistermaat-Heckman
theorem asserting that the push-forward of the symplectic measure by the moment
map for a torus action is a piecewise polynomial. For more details see [8].

Now by integrating the volume form induced by ωa over the space Ma, we get:

Corollary 3.3. Let 0 be a regular value of the proper moment map µ : M → Rn of
the Hamiltonian action of Tn on M . Then for sufficiently small ε > 0 and a ∈ Rn

+

with |a| ≤ ε, the volume of Ma = µ−1(a)/Tn is a polynomial in a1, . . . , an of degree
m = dim(Ma)/2 given by ∑

α
|α|≤m

C(α) · aα,

where

α! (m − |α|)! C(α) =
∫

M0

φα1
1 · · ·φαn

n · ωm−|α|.

Here the exponent α = (α1, . . . , αn) ranges over elements in Zn
≥0, aα = aα1

1 · · ·

aαn
n , |α| =

n∑
i=1

αi and α! =
n∏

i=1

αi!.

4. Volumes of moduli spaces of bordered Riemann surfaces

In this section we establish a relationship between the volume polynomials and
intersection numbers of tautological classes over moduli space.
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Collar curves. For any simple closed geodesic γ on a hyperbolic surface X, there
is a collar neighborhood of width

arcsinh
(

1
sinh(�γ(X)/2)

)
which is an embedded annulus. Moreover, two simple closed geodesics are disjoint
if and only if their collars are disjoint [4]. Therefore, one can define a continuous
function F : R+ → R+ such that

• for each boundary component βi of X ∈ Tg,n(b), there is a curve β̃i of
constant curvature of length F (�βi

(X)) inside the collar neighborhood of
βi, and

• lim
x→0

F (x) = 1/4.

As �i → 0, β̃i tends to a horocycle of length 1/4 around the corresponding puncture.
When �βi

(X) > 0, there is a canonical bijection between the points of β̃i and βi.

Geometric circle bundles. The orientation on Sg,n defines a canonical orienta-
tion on its boundary components as follows. Let βi be a boundary component of
X ∈ Tg,n(b), x ∈ βi, and Nx an outward vector normal to βi at x. Then we say a
tangent vector vx to βi is positive iff the pair (vx, Nx) has positive orientation with
respect to the orientation of X.

Now let γi : [0, bi] → βi be an oriented arc length parametrization of βi. For any
t ∈ [0, bi] define ξt : βi → βi by

ξt(γi(s)) = γi(s + t · bi).

As ξt+1 = ξt, ξ defines an S1-action on βi.
Let β̃i be a curve parallel to the boundary component βi on X ∈ Tg,n(b). The

advantage of using the parallel curve β̃i instead of βi is that β̃i has positive length
even when the geodesic length of βi is zero; in this case β̃i is a horocycle around
the puncture pi. Otherwise, there is a canonical one-to-one map between β̃i and
βi. Note that when i �= j, the curve β̃i is disjoint from β̃j .
For a fixed b = (b1, . . . , bn), define the space Si(Tg,n(b)) by

Si(Tg,n(b)) = {(X, p) | p ∈ β̃i, X ∈ Tg,n(b)} → Tg,n(b).

There is a natural action of Modg,n on Si(Tg,n(b)). Since the stabilizer of every
point is finite, the quotient space Si(Mg,n(b)) is a circle bundle over Mg,n(b) in
the orbifold sense. Also, this circle bundle can be extended to X ∈ Mg,n(b) where
the length of some simple closed geodesic inside the surface can be zero. It is
essential that the parallel curve β̃i is always disjoint from the possible singular
points of X ∈ Mg,n(b). Therefore, we have

Lemma 4.1. For any 1 ≤ i ≤ n and b ∈ (R+)n, (Si(b), S1,Mg,n(b)) is a principal
circle bundle over Mg,n(b) in the orbifold sense.

Tautological classes. Next we consider the case where the lengths of all boundary
components are zero. Since Mg,n is an orbifold, the first Chern class of the circle
bundle Si defines an element of the cohomology class of the moduli space

[c1(Si)] ∈ H2(Mg,n, Q).
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We will relate the first Chern class of Si to the tautological class

ψi = c1(Li).

Recall that every finite hyperbolic surface defines a complex 1-manifold via its
uniformization. Namely, for X ∈ Tg,n there is a unique compact complex curve C
and finitely many points p1, . . . , pn on C such that X is conformally equivalent to
C − {p1, . . . , pn}.

Also, each cusp neighborhood of X is conformally equivalent to a punctured disk
∆−{0} ⊂ C [4]. Consider the parallel curve β̃i around the puncture pi. Then each
element of the tangent space of X at pi corresponds to a point of β̃i. However, the
orientation on β̃i defined earlier in this section is different from the one induced by
the orientation on tangent vectors at pi.

On the other hand, as Li is a complex line bundle, the underlying real vector
bundle has a canonical orientation. Therefore the duality between the tangent and
cotangent spaces at pi gives rise to an orientation-reversing isomorphism between
the circle bundle corresponding to the line bundle Li and the circle bundle Si with
reverse orientation.

Therefore, we can establish the following result.

Theorem 4.2. For any 1 ≤ i ≤ n, we have

[c1(Si)] = [ψi] ∈ H2(Mg,n, Q),

where ψi is the ith tautological class over Mg,n.

Remark. Henceforth, we only deal with the circle bundle Si and forget about the
complex structure of Li. Later, we will use the Chern-Weil description of character-
istic classes in terms of the curvature form for calculating the intersection numbers.
See Appendix C of [21] for more details.

Moduli space of bordered Riemann surfaces. Consider the moduli spaces of
bordered Riemann surfaces with marked points (without fixing the lengths of the
boundary components) defined by

M̂g,n = {(X, p1, . . . , pn) | pi ∈ β̃i, X ∈ Mg,n(b1, . . . , bn), bi > 0}.

Define the map � : M̂g,n → Rn
+ by

�(X, p1, . . . , pn) = (�β1(X), . . . , �βn
(X)).

There is a natural action of Tn = Sn
1 on the space M̂g,n as follows. For each

1 ≤ i ≤ n, Si
1 acts by moving pi on the curve β̃i, that is,

ξt
i(X, p1, . . . , pn) = (X, p1, . . . , ξ

t(pi), . . . , pn).

The goal of this part is to show that this Tn action is the Hamiltonian flow of the
function �2/2 with respect to the symplectic form on M̂g,n induced by the Weil-
Petersson form.
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Extension of the Weil-Petersson symplectic form to Mg,n(b). As we men-
tioned in §2, the moduli space Mg,n(b) has a natural real analytic structure arising
from the Fenchel-Nielsen coordinates [33].

By work of Wolpert [33], the Weil-Peterssen symplectic form has a smooth ex-
tension ωFN to Mg,n(b) (§2). Using the extension of the Weil-Petersson symplectic
form, we can define a Tn-invariant symplectic form on M̂g,n.

Remark. There is a different method for extending the Weil-Peterssen symplectic
form to Mg,n by using a closed current ωC relative to the complex structure of
Mg,n. In [33], Wolpert showed that ωFN and ωC determine the same cohomology
class. We remark that the complex structure and the Fenchel-Nielsen coordinates
do not induce the same smooth structure on Mg,n.

Theorem 4.3. The orbifold M̂g,n has a natural Tn-invariant symplectic structure
such that

(1) the map
�2/2 = (�β1(X)2/2, . . . , �βn

(X)2/2)

is the moment map for the action of Tn on M̂g,n, and
(2) the canonical map

s : �−1(b1, . . . , bn)/T → Mg,n(b1, . . . , bn)

is a symplectomorphism.

Proof. Let Sg,2n be a surface of genus g with 2n boundary components β1, . . . , β2n.
Fix n simple closed curves γ1, . . . , γn on Sg,2n such that γi bounds a pair of pants
with β2i−1 and β2i, and let Γ = (γ1, . . . , γn). Consider Mg,2n

Γ
defined by

{(X, η)| X ∈ Mg,2n , η = (η1, . . . , ηn) ∈ OΓ, ηi’s are closed geodesics on X},
where OΓ is the set of homotopy classes of elements of the set Modg,2n ·Γ. Note
that by Wolpert’s result, the symplectic form induced by the Weil-Petersson form
on MΓ

g,2n extends to Mg,2n
Γ

(§2). To prove the theorem, we study how Mg,2n
Γ

and M̂g,n are related.
Note that there are two canonical points on each boundary component α of a

pair of pants; these points are the end points of the length-minimizing geodesics
connecting α to the other two boundaries of Σ.

Fix (X, p1, . . . , pn) ∈ M̂g,n with geodesic boundary components γ1, . . . , γn. First
we construct a surface Y ∈ Mg,2n by gluing n pairs of pants Σ1, . . . , Σn with
boundary lengths (�γi

(X), 0, 0) to boundary components of X; we glue Σi to γi

such that the point pi on γi is adjacent to the canonical point on the boundary of
Σi corresponding to β2i−1.

Therefore, we get a map

f : M̂g,n → Mg,2n
Γ
,

defined by
f(X, p1, . . . , pn) = (Y, (γ1, . . . , γn)).

It is easy to check that the map f defines a symplectic form on M̂g,n. By
Corollary 2.2, the symplectic form induced by f on M̂g,n satisfies both conditions
in the statement of the theorem. �
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We remark that the extension of this symplectic form to Mg,n(0, . . . , 0) is just
the Weil-Petersson symplectic form.

Now we can establish the main result of this section.

Theorem 4.4. The coefficients of the volume polynomial

Vol(Mg,n(b1, . . . , bn)) =
∑

|α|≤3g−3+n

Cg(α) · b2α

are given by

Cg(α1, . . . , αn) =
2m(g,n)|α|

2|α| |α|! (3g − 3 + n − |α|)!

∫
Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α|,

where ψi is the first Chern class of the i-th tautological line bundle and ω is the
Weil-Petersson symplectic form. Here m(g, n) = δ(g− 1)× δ(n− 1), α! =

∏n
i=1 αi!

and |α| =
∑n

i=1 αi.

Sketch of the proof. By Theorem 2.3, we can assume that the moduli space is a
manifold. Fix ε1, . . . , εn > 0. By applying Theorem 3.3 to M̂g,n with µ = �2/2, we
obtain a formula for Vol(Mg,n(b1, . . . , bn)) in terms of∫

Mg,n(ε1,...,εn)

(c1(S1))α1 · · · (c1(Sn))αn · ω3g−3+n−|α|.

We remark that by Lemma 4.1, each Si is a circle bundle over Mg,n(ε1, . . . , εn).
Consider the extension of the circle bundle Si to Mg,n. Since [c1(Si)] = [ψi] on

Mg,n, we get the result by taking the limit as εi → 0. See the introduction for the
exceptional case when g = n = 1. �

5. A recursive formula for Weil-Petersson volumes

In this section we state a recursive formula for the Vg,n(b)’s obtained in [22].
This recursive formula (equation (5.5)) relates the volume polynomial Vg,n(L) to
the volume polynomials of the moduli spaces of Riemann surfaces that we get by
cutting one pair of pants from Sg,n.

An identity for the lengths of simple closed geodesics. Our point of depar-
ture for calculating these volume polynomials is an identity [20] for the lengths of
simple closed geodesics on a punctured hyperbolic Riemann surface.

Theorem 5.1 (Generalized McShane identity for bordered surfaces). For any X ∈
Tg,n(b1, . . . , bn) with 3g − 3 + n > 0, we have

(5.1)
∑

(α1,α2)

D(b1, �α1(X), �α2(X)) +
n∑

i=2

∑
γ

R(b1, bi, �γ(X)) = b1.

Here the first sum is over all unordered pairs of simple closed geodesics (α1, α2)
bounding a pair of pants with boundary component β1, and the second sum is over
simple closed geodesics γ bounding a pair of pants with β1 and βi.

The two functions D,R : R3 → R+ are defined by

D(x, y, z) = 2 log

(
e

x
2 + e

y+z
2

e
−x
2 + e

y+z
2

)
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and

R(x, y, z) = x − log
(

cosh( y
2 ) + cosh(x+z

2 )
cosh( y

2 ) + cosh(x−z
2 )

)
.

Define H : R2 → R by

(5.2) H(x, y) =
1

1 + e
x+y

2

+
1

1 + e
x−y

2

.

It can be shown that

(5.3)
∂

∂x
D(x, y, z) = H(y + z, x)

and

(5.4)
∂

∂x
R(x, y, z) =

1
2
(H(z, x + y) + H(z, x − y)).

In order to calculate Vg,n(b), we develop a method to integrate the generalized
identity over certain coverings of Mg,n(b1, . . . , bn) [22].

Calculation of V1,1(b). We sketch the main idea of the calculation of the Vg,n(b)’s
through an example when g = n = 1. In this case, Theorem 5.1 implies that for
any X ∈ T (S1,1, b), we have∑

γ

D(b, �γ(X), �γ(X)) = b,

where the sum is over all nonperipheral simple closed curves on S1,1. From equation
(5.3), the function D satisfies

∂

∂b
D(b, x, x) =

1

1 + ex− b
2

+
1

1 + ex+ b
2
.

Using the method developed in [22] for integrating the left-hand side of the identity
over M1,1(b), we get

b · V1,1(b) =

∞∫
0

x D(b, x, x) dx.

So we have
∂

∂b
b · V1,1(b) =

∞∫
0

x · ( 1

1 + ex+ b
2

+
1

1 + ex− b
2
) dx.

By setting y1 = x + b/2 and y2 = x − b/2, we get
∞∫
0

x · ( 1

1 + ex+ b
2

+
1

1 + ex− b
2
) dx =

∞∫
b/2

y1 − b/2
1 + ey1

dy1 +

∞∫
−b/2

y2 + b/2
1 + ey2

dy2

= 2

∞∫
0

y

1 + ey
dy +

b/2∫
0

y − b/2
1 + ey

dy +

−b/2∫
0

y + b/2
1 + ey

dy

=
π2

6
+

b/2∫
0

(y − b/2)(
1

1 + ey
+

1
1 + e−y

) dy =
π2

6
+

b2

8
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since we have
1

1 + ey
+

1
1 + e−y

= 1.

As a result, we get

V1,1(b) =
b2

24
+

π2

6
.

Remark. This result agrees with the result obtained in [23].

Given a set A of positive numbers A = {a1, . . . , an}, define Vg,n(A) by

Vg,n(A) = Vg,n(a1, . . . , an).

Statement of the recursive formula. In the simplest case when n = 3 and
g = 0, the moduli space M0,3(b1, b2, b3) consists of only one point, and by definition,

V0,3(b1, b2, b3) = 1.

The function Vg,n(b1, . . . , bn) for any g and n (2g − 2 + n > 0) is determined
recursively as follows.

• For any b1, b2, b3 ≥ 0, set

V0,3(b1, b2, b3) = 1

and

V1,1(b1) =
b2
1

24
+

π2

6
.

• For b = (b1, . . . , bn), let b̂ = (b2, . . . , bn). When (g, n) �= (1, 1), (0, 3), the
volume Vg,n(b) = Vol(Mg,n(b)) satisfies

(5.5)
∂

∂b1
b1Vg,n(b) = Acon

g,n (b1, b̂) + Adcon
g,n (b1, b̂) + Bg,n(b1, b̂),

where we have

Acon
g,n (b1, b̂) =

1
2

∞∫
0

∞∫
0

x y Âcon
g,n (x, y, b1, b̂) dx dy,

Adcon
g,n (b1, b̂) =

1
2

∞∫
0

∞∫
0

x y Âdcon
g,n (x, y, b1, b̂) dx dy,

and

Bg,n(b1, b̂) =

∞∫
0

x B̂g,n(x, b1, b̂) dx.

Now we define the functions

Âcon
g,n : Rn+2

+ → R+,

Âdcon
g,n : Rn+2

+ → R+,

and
B̂g,n : Rn+1

+ → R+

in terms of Vh,m’s where 2h + m < 2g + n. Let

m(g, n) = δ(g − 1) × δ(n − 1).

Namely, m(g, n) = 0 except for g = n = 1.
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I) : Definition of Âcon
g,n . Define Âcon

g,n : Rn+2
+ → R+ by

Âcon
g,n (x, y, b1, b̂) =

Vg−1,n+1(x, y, b̂)
2m(g−1,n+1)

· H(x + y, b1).

The function H is defined by equation 5.2.
II) : Definition of Âdcon

g,n . Let Ig,n be the set of ordered pairs

a = ((g1, I1), (g2, I2)),

where I1, I2 ⊂ {2, . . . , n} and 0 ≤ g1, g2 ≤ g such that
(1) the two sets I1 and I2 are disjoint and {2, 3, . . . , n} = I1 ∪ I2;
(2) the numbers g1, g2 ≥ 0 and n1 = |I1|, n2 = |I2| satisfy

g1 + g2 = g,

2 ≤ 2g1 + n2,

and
2 ≤ 2g2 + n2.

For notational convenience, given b = (b1, . . . , bn) and I = {j1, . . . , jk} ⊂ {1, . . . , n}
define bI by

bI = (bj1 , . . . , bjk
).

For
a = ((g1, I1), (g2, I2)) ∈ Ig,n,

let

V (a, x, y, b̂) =
Vg1,n1+1(x, bI1)

2m(g1,n1+1)
× Vg2,n2+1(y, bI2)

2m(g2,n2+1)
.

Finally, define Âdcon
g,n : Rn+2

+ → R+ by

Âdcon
g,n (x, y, b1, b̂) =

∑
a∈Ig,n

V (a, x, y, b̂) · H(x + y, b1).

III) : Definition of B̂g,n. Define B̂g,n : Rn+1
+ → R+ by

B̂g,n(x, b1, b̂) =
1

2m(g,n−1)

n∑
j=2

1
2
(H(x, b1 + bj) + H(x, b1 − bj))

·Vg,n−1(x, b2, . . . , b̂j , . . . , bn).(5.6)

Remark. Note that in this recursive formula, the factor 1/2 appears in the case
of g = n = 1. The main reason is that the stabilizer of a simple closed curve
separating off a one-handle contains a half twist. See [22] for more details.

Connection with topology of the set of pairs of pants. The recursive formula
(5.5) is closely related to the topology of different types of pairs of pants in a surface.
In fact, this formula gives us the volume of Mg,n(b) in terms of volumes of moduli
spaces of Riemann surfaces that we get by removing pairs of pants containing the
boundary component β1 [22].

Remark. The functions Acon
g,n (b), Adcon

g,n (b) and Bg,n(b) are determined by the func-
tions {Vi,j} where 2i + j < 2g + n. Therefore equation (5.5) is a recursive formula
for calculating Vg,n(b). Using (5.5), one can show that Vg,n(b) is a polynomial in b
(Theorem 1.1).
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Calculating the coefficients of Vg,n(b). The following elementary observations
are our main tools for simplifying the recursive formula.

For i ∈ N, define F2i+1 : R+ → R+ by

F2k+1(t) =

∞∫
0

x2k+1 · H(x, t) dx.

By setting z = x + y, we get
∞∫
0

∞∫
0

x2i+1 · y2j+1 · H(x + y, t) dx dy =

∞∫
0

z∫
0

(z − y)2i+1 · y2j+1 · H(z, t) dy dz

=
(2i + 1)! · (2j + 1)!

(2i + 2j + 3)!

∞∫
0

z2i+2j+3H(z, t) dz.

Therefore, we have

(5.7)

∞∫
0

∞∫
0

x2i+1 · y2j+1 · H(x + y, t) dx dy =
(2i + 1)! · (2j + 1)!

(2i + 2j + 3)!
F2i+2j+3(t).

These functions play a key role in the calculation of Vg,n(b). It is easy to calculate
the function F2k+1 explicitly.

Lemma 5.2. For 0 ≤ k, we have

F2k+1(t)
(2k + 1)!

=
k+1∑
i=0

ζ(2i) (22i+1 − 4) · t2k+2−2i

(2k + 2 − 2i)!
.

Therefore, the function F2k+1(t) is a polynomial in t2 of degree k + 1, and the
coefficient of m2k+2−2i lies in π2i · Q>0.

Remark. Here ζ(0) = −1/2, and therefore the leading coefficient of the polynomial
F2k+1(t) is t2k+2/(2k + 2).

Leading coefficients of Vg,n(b). As we will see later, calculating the leading coef-
ficients of Vg,n(b) turns out to be easier than calculating other terms; the recursive

formula simplifies when
n∑

i=1

αi = 3g − 3 + n.

Simplifying Acon
g,n and Adcon

g,n . Let P (x, y) be a polynomial of degree d in x2 and
y2 of the form

P (x, y) =
∑

1≤i+j≤d

C(i, j) x2i y2j .

Then equation (5.7) and Lemma 5.2 imply that the function

P̂ (x) =

∞∫
0

∞∫
0

y1 y2 H(y1 + y2, x) P (y1, y2) dy1 dy2

is a polynomial in x2; the leading term of P̂ (x) is equal to

(5.8)
∑

i+j=d

(2i + 1)!(2j + 1)!
(2d + 4)!

C(i, j)x2d+4.
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Simplifying Bg,n. Let Q(x) be a polynomial of degree d in x2 of the form

Q(x) =
d∑

i=0

C(i) x2i.

Then the function

Q̂(x, y) =
1
2

∞∫
0

t Q(t) (H(t, x + y) + H(t, x − y)) dt

is a polynomial of degree d + 1 in x2 and y2. Using Lemma 5.2, this polynomial
can be explicitly calculated; when i + j = d + 1 the term corresponding to x2iy2j

in Q̂(x, y) is equal to

(5.9) (2d + 1)! C(d)
x2iy2j

(2i)! (2j)!
.

Notation. Given k = (k1, . . . , kn) ∈ Zn
+, let

Ĉ(k) =
Cg(k)
2m(g,n)

,

where g is determined by 3g − 3 + n =
∑n

i=1 ki. The factor 2m(g,n) is important in
the case of g = n = 1.

Also, for I ⊂ {2, . . . n}, let kI = (ks)s∈I , and Ic = {2, . . . n} − I. For simplicity,
we denote the coefficient of

x2k1
1 · · ·x2kn

n

in the polynomial F (x1, . . . , xn) by F (x1, . . . , xn)[k]. For example, by definition,
Cg(k) = Vg,n(b)[k].

In terms of the above notation, the recursive formula for the leading coefficients
of volume polynomials translates to the following statement.

Lemma 5.3. The leading coefficients of the polynomials Adcon
g,n (b), Acon

g,n (b) and
Bg,n(b) are given by

• Adcon
g,n (b)[k] =

2k1 + 1
2

∑
i+j=k1−2

(2i + 1)! (2j + 1)!
(2k1 + 1)!

∑
I⊂{2,...n}

Ĉ(i,kI) · Ĉ(j,kIc),

• Acon
g,n (b)[k] =

2k1 + 1
2

∑
i+j=k1−2

(2i + 1)! (2j + 1)!
(2k1 + 1)!

Ĉ(i, j, k2, . . . , kn),

and

• Bg,n(b)[k] =

(2k1 + 1)
n∑

j=2

(2(k1 + kj − 1) + 1)!
(2k1 + 1)! (2kj)!

Ĉ(k1 + kj − 1, k2, . . . , k̂j , . . . , kn).
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Here k = (k1, . . . , kn) ∈ Zn
+ is such that

∑n
i=1 ki = 3g − 3 + n.

Sketch of the proof. To calculate the leading coefficients of Adcon
g,n (b), it is enough

to find the coefficient of b2k1
1 · · · b2kn

n in

∞∫
0

∞∫
0

x y Vg1,n1(x, bI1) × Vg2,n2(x, bI2) H(x + y, b1)dx dy

for any a ∈ Ig,n. Now using Theorem 1.1, Vg1,n1(bI1)×Vg2,n2(bI2) is a polynomial in
b2
1, . . . , b

2
n. So we can use (5.8) to obtain the result. Similarly, the leading coefficients

of Acon
g,n (b) and Bg,n(b) can be calculated using equations (5.8) and (5.9). �

6. Virasoro equations

In this section we use the relationship between the volume polynomials and the
intersection numbers of tautological classes to derive the Virasoro equations.

String and dilaton equation. If one of the αi’s is 0 or 1, the coefficients of
b2α1
1 · · · b2αn

n in Adcon
g,n (b) and Acon

g,n (b) equal zero. Hence by using Lemma 5.3 and
Theorem 4.4, we obtain the following:

• String equation: 〈τ1, τα1 , . . . , ταn
〉g = (2g + n − 2) 〈τα1 , . . . , ταn

〉g,
• Dilaton equation: 〈τ0, τα1 , . . . , ταn

〉g =
∑

αi �=0

〈τα1 , . . . , ταi−1, . . .〉g.

Here
∑n

i=1 αi = 3g − 3 + n, and as in the Introduction,

〈τα1 , . . . ταn
〉g =

∫
Mg,n

ψα1
1 · · ·ψαn

n .

For a simple algebro-geometric proof of the preceding result see [9].

Virasoro constraints. Let

Fg(t0, t1, . . .) =
∑
{di}

〈
∏

τdi
〉g

∏
r>0

tnr
r /nr!,

where the sum is over all sequences of nonnegative integers with finitely many
nonzero terms and nr = Card(i : di = r). Let

F =
∞∑

g=0

λ2g−2Fg.

Define the sequence of differential operators L−1, L0, . . . Ln, . . . by

L−1 =
∂

∂t0
+

λ−2

2
t20 +

∞∑
i=1

ti+1
∂

∂ti
,

L0 =
3
2

∂

∂t1
+

∞∑
i=1

2i + 1
2

∂

∂ti
+

1
16

,
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and for n ≥ 1,

Ln = −
(

(2n + 3)!!
2n+1

)
∂

∂tn+1
+

∞∑
i=0

(
(2i + 2n + 1)!!
(2i − 1)!!2n+1

)
ti

∂

∂ti+n

+
λ2

2

n−1∑
i=0

(
(2i + 1)!! (2n − 2i − 1)!!

2n+1

)
∂2

∂ti∂tn−1−i
,

where (2i + 1)!! = 1 · 3 . . . · (2i + 1).

Theorem 6.1. For k ≥ −1, we have

Lk(exp(F )) = 0.

Remark. Since the sequence {Li} satisfies

[Lm, Ln] = (m − n)Lm+n,

it is enough to show that L2(eF ) = 0. However, here we show Lk(eF ) = 0 for any
k ≥ −1.

Proof. Note that L−1 and L0 are equivalent to the dilaton and string equations.
Using the recursive formula for the volume polynomials in equation (5.5), for any
k = (k1, . . . , kn) we have

(6.1) (2k1 + 1) · Vg,n(b)[k] = Acon
g,n (b)[k] + Adcon

g,n (b)[k] + Bg,n(b)[k].

Using Lemma 5.3, we can write Acon
g,n (b)[k], Adcon

g,n (b)[k] and Bg,n(b)[k] in terms of
Ĉ(k

′
)’s. On the other hand, by Theorem 4.4, we have

Ĉ(k) =
Cg(k)
2m(g,n)

=
1

2|k| k!

∫
Mg,n

ψk1
1 · · ·ψkn

n =
〈τk1 , . . . , τkn

〉
2k1 k1! · · · 2kn kn!

,

where 3g − 3 + n =
n∑

i=1

ki.

Since
(2n)!
2nn!

= (2n − 1)!!,

from equation (6.1) and Lemma 5.3, we get

(2k1 + 1)!! 〈τk1 , . . . , τkn
〉

=
1
2

∑
i+j=k1−2

(2i + 1)!! (2j + 1)!!
∑

I⊂{2,...n}
〈τi, τkI

〉 · 〈τj , τkIc 〉

+
1
2

∑
i+j=k1−2

(2i + 1)!! (2j + 1)!! 〈τi, τj , τk2 , . . . , τkn
〉

+
n∑

j=2

(2(k1 + kj − 1) + 1)!!
(2kj − 1)!!

〈τk2 , . . . , τkj+k1−1, . . . , τkn
〉.(6.2)

It is easy to see that equation (6.2) implies Lk1−1(eF ) = 0. �
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