ERRATUM TO “REAL BOUNDS, ERGODICITY AND NEGATIVE SCHWARZIAN FOR MULTIMODAL MAPS”

SEBASTIAN VAN STRIEN AND EDSON VARGAS

In Part 1 of Theorem C of the paper Real bounds, ergodicity and negative Schwarzian for multimodal maps, see [1], the assumption that V is nice was, by mistake, omitted. We would like to thank Weixiao Shen for pointing this out. The correct version of Theorem C(1) is as follows:

Theorem C(1) (Improved Macroscopic Koebe Principle). Assume that $f : M \to M$ is contained in $A^{1+\text{Zygmund}}$. Then for each $\xi > 0$, there exists $\xi' > 0$ such that if I is a nice interval, V is nice and ξ-well-inside I and $x \in I$, $f^k(x) \in V$ (with $k \geq 1$ not necessarily minimal), then the pullback of V along $\{x, \ldots, f^k(x)\}$ is ξ'-well-inside the return domain to I containing x.

Here, as before, we define an open interval K to be nice if no iterate of ∂K enters K. This implies that if K_1 and K_2 are pullbacks of K, then they are either disjoint or nested.

In Lemma 9 (page 762) it was implicitly assumed that V is disjoint from J_n. It is for this reason that the proof of Theorem C(1) does not work unless we assume V is nice (or something similar). The proof of Theorem C(1) as stated above is essentially the same as before, using Lemma 6 below instead of Lemma 6; then in Lemma 9 (page 762) we do not need to require that k_n+1 is a jump time provided we assume that V is nice. Making the additional assumption that V is nice, Proposition 1 (and its proof) and the rest of the paper go through unchanged.

Lemma 6’. For each $\rho > 0$ sufficiently small, there exists $\delta_3 > 0$ such that if I is a ρ-scaled neighbourhood of a nice interval $V \subset I$, then J is a δ_3-scaled neighbourhood of any component A of $\phi_j^{-k}(V)$ (where $k \geq 1$ is arbitrary).

Proof. Let V_i, $i = 0, \ldots, k$ be the component of $\phi_j^{-k}(V)$ containing $\phi_j(A)$. Of course, we may assume that k is large and that V_0, \ldots, V_k are disjoint.

Claim. There exists $\alpha > 0$ such that if $0 \leq j < k$ and V_{j+1} is contained in a neighbourhood of V_j of size $(1 + \alpha)|V_j|$, then V_j is α-well-inside I. Similarly, if $0 \leq j < k - 1$ and V_j lies between V_{j+1} and V_{j+2}, then V_j is α-well-inside I.

Proof of Claim. If V_{j+1} is contained in a neighbourhood of V_j of size $(1 + \alpha)|V_j|$ and α is small enough, then ϕ' is close to zero on a definite neighbourhood of V_j. So V_j is contained in the basin of an attracting fixed point with multiplier close to zero. Since V_k is nice and δ_3-well-inside I, we easily get that V_j is δ_3-well-inside I.

\[\text{Received by the editors February 18, 2006.} \]

2000 Mathematics Subject Classification. Primary 37Exx, 37Fxx.

Key words and phrases. Dynamical systems, interval dynamics, holomorphic dynamics.

\[\textcopyright 2006 \text{American Mathematical Society} \]

Reverts to public domain 28 years from publication

267
I, proving the first part of the claim. The second part of the claim follows in the same way by first applying part 1 to V_j, V_{j+1} and then applying it to V_j, V_{j+2} while considering ϕ^2 instead of ϕ, completing the proof of the claim.

If both sides of J are small, then $|\phi'|$ is bounded on J. There are three possibilities.

(a) V_1 lies between V_2 and V_3, in which case, by the second part of the Claim, V_1 is well-inside I.

(b) V_2 lies between V_1 and V_3; in this case since $|V_1|/|V_2|$ is not small and by the first part of the Claim, V_2 is well-inside I.

(c) V_3 lies between V_1 and V_2; then, because $|V_1|/|V_2|$ and $|V_2|/|V_3|$ are not small, V_3 is well-inside I. In all cases, we get that V_0 is well-inside J.

So assume one of the sides, say the right side, of J is not small. Let $1 \leq j \leq k$ be the largest integer so that V_1, \ldots, V_j are all not α-well-inside I. By taking $\alpha > 0$ small, we may assume $j \leq k - 2$. Since V_{j+1} is α-well-inside I, we may assume that $j \geq 1$ and that there exists $\alpha' > 0$ so that V_j, V_{j-1} are α'-well-inside $J \subset I$. By the claim, for each $i = 1, \ldots, j$, V_i has an α-small and an α-big side, and V_{i+1} is contained in the α-big side. Since the right side of J is not small, V_1, \ldots, V_{j+1} lie therefore ordered from left to right. If for each $i = 1, \ldots, j-1$, V_{i-1} is contained in a β-scaled neighbourhood of V_i, then V_j is in a $(\beta + \beta^2 + \cdots + \beta^j)$-scaled neighbourhood of V_{j-1}. So taking $\beta \in (0, 1)$ so small that $\beta/(1 - \beta) < \alpha'/2$, then, because V_{j-1} is α'-well-inside I, the left component of $I \setminus V_1$ has at least size $\frac{\alpha'}{\beta^j} |V_{j-1}| > \frac{\alpha'}{\beta} |V_1|$, i.e., V_1 is well-inside I, and V_0 is well-inside J. Hence we may assume there exists $i \in \{1, \ldots, j-1\}$ so that V_{i-1} is not contained in a β-scaled neighbourhood of V_i. This and the first part of the Claim imply that V_i is well-inside the convex hull $H_i := [V_{i-1}, V_{i+1}]$ of V_{i-1} and V_{i+1}. Because the intervals V_1, \ldots, V_{j+1} lie ordered, it follows that the pullback of H_i along V_1, \ldots, V_i has intersection multiplicity at most 4 and therefore that V_1 is well-inside I. This again gives that V_0 is well-inside J. (This method of proof can also be used to provide a slightly shorter proof of Lemma 5.) \[\square \]

Reference

Department of Mathematics, Warwick University, Coventry CV4 7AL, England

E-mail address: strien@maths.warwick.ac.uk

Department of Mathematics, University of São Paulo, São Paulo, Brazil

E-mail address: vargas@ime.usp.br