Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Representations of affine Hecke algebras and based rings of affine Weyl groups


Author: Nanhua Xi
Journal: J. Amer. Math. Soc. 20 (2007), 211-217
MSC (2000): Primary 20C08
DOI: https://doi.org/10.1090/S0894-0347-06-00539-X
Published electronically: June 19, 2006
MathSciNet review: 2257401
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that the Deligne-Langlands-Lusztig classification of simple representations of an affine Hecke algebra remains valid if the parameter is not a root of the corresponding Poincaré polynomial. This verifies a conjecture of Lusztig proposed in 1989.


References [Enhancements On Off] (What's this?)

  • [AM] S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras of type $ G(r,1,n)$, Math. Z. 233 (2000), 601-623.MR 1750939 (2001e:20007)
  • [BO] R. Bezrukavnikov and V. Ostrik, On tensor categories attached to cells in affine Weyl groups, II, in ``Representations of algebraic groups and quantum groups", Advanced Studies in Pure Math., vol. 40, Math. Soc. of Japan, Tokyo, 2004, pp. 101-119. MR 2074591 (2006e:20006)
  • [B] A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1975), 233-259.MR 0444849 (56:3196)
  • [Gr] I. Grojnowski, Representations of affine Hecke algebras and affine quantum $ GL_n$ at roots of unity, Inter. Math. Res. Notices 5 (1994), 213-216.MR 1270135 (95e:20054)
  • [G1] A. Gyoja, Modular representation theory over a ring of higher dimension with application to Hecke algebras, J. Alg. 174 (1995), 553-572.MR 1334224 (96m:20024)
  • [G2] A. Gyoja, Cells and modular representations of Hecke algebras, Osaka J. Math. 33 (1996), no. 2, 307-341. MR 1416051 (97k:20018)
  • [KL1] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 0560412 (81j:20066)
  • [KL2] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153-215.MR 0862716 (88d:11121)
  • [L1] G. Lusztig, Singularities, character formulas, and a $ q$-analog of weight multiplicities, Astérisque 101-102 (1983), pp. 208-227.MR 0737932 (85m:17005)
  • [L2] G. Lusztig, Cells in affine Weyl groups, in ``Algebraic groups and related topics", Advanced Studies in Pure Math., vol. 6, Kinokunia and North Holland, 1985, pp. 255-287. MR 0803338 (87h:20074)
  • [L3] G. Lusztig, Cells in affine Weyl groups, II, J. Alg. 109 (1987), 536-548.MR 0902967 (88m:20103a)
  • [L4] G. Lusztig, Cells in affine Weyl groups, III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 223-243. MR 0914020 (88m:20103b)
  • [L5] G. Lusztig, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989) No. 2, 297-328. MR 1015001 (90k:20068)
  • [L6] G. Lusztig, Representations of affine Hecke algebras, Astérisque 171-172 (1989), 73-84.MR 1021500 (90k:22028)
  • [V] M.-V. Vignéras, Modular representations of $ p$-adic groups and of affine Hecke algebras, Proc. of Inter. Congress. Math., Beijing 2002, Vol. 2, pp. 667-677, Higher Eduction Press, 2002.MR 1957074 (2004i:22019)
  • [X1] N. Xi, Representations of affine Hecke algebras, LNM 1587, Springer-Verlag, Berlin, 1994.MR 1320509 (96i:20058)
  • [X2] N. Xi, The based ring of two-sided cells of affine Weyl groups of type $ \tilde A_{n-1},$ Mem. of Amer. Math. Soc., Vol. 157, No. 749, 2002.MR 1895287 (2003a:20072)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20C08

Retrieve articles in all journals with MSC (2000): 20C08


Additional Information

Nanhua Xi
Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Email: nanhua@math.ac.cn

DOI: https://doi.org/10.1090/S0894-0347-06-00539-X
Keywords: Affine Hecke algebra, based ring, representation
Received by editor(s): February 10, 2005
Published electronically: June 19, 2006
Additional Notes: The author was partially supported by a fund of the 973 Program.
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society