Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Noncommutative maximal ergodic theorems


Authors: Marius Junge and Quanhua Xu
Journal: J. Amer. Math. Soc. 20 (2007), 385-439
MSC (2000): Primary 46L53, 46L55; Secondary 46L50, 37A99
DOI: https://doi.org/10.1090/S0894-0347-06-00533-9
Published electronically: May 18, 2006
MathSciNet review: 2276775
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the study of various maximal ergodic theorems in noncommutative $ L_p$-spaces. In particular, we prove the noncommutative analogue of the classical Dunford-Schwartz maximal ergodic inequality for positive contractions on $ L_p$ and the analogue of Stein's maximal inequality for symmetric positive contractions. We also obtain the corresponding individual ergodic theorems. We apply these results to a family of natural examples which frequently appear in von Neumann algebra theory and in quantum probability.


References [Enhancements On Off] (What's this?)

  • [BeL] Bergh, J. and Löfström, J. 
    Interpolation spaces.
    Springer-Verlag, Berlin, 1976. MR 0482275 (58:2349)
  • [Bi] Biane, Ph. 
    Free hypercontractivity.
    Comm. Math. Phys., 184:457-474, 1997. MR 1462754 (98g:46097)
  • [BlD] Blanchard, E. and Dykema, K. 
    Embeddings of reduced free products of operator algebras.
    Pacific J. Math., 199:1-19, 2001. MR 1847144 (2002f:46115)
  • [Bo1] Bozejko, M. 
    Positive-definite kernels, length functions on groups and a Non-commutative von Neumann inequality.
    Studia Math., 95:107-118, 1989. MR 1038498 (91f:43011)
  • [Bo2] Bozejko, M. 
    Positive and negative definite kernels on discrete groups.
    Lectures at Heidelberg University, 1987.
  • [Bo3] Bozejko, M. 
    Ultracontractivity and strong Sobolev inequality for $ q$-Ornstein-Uhlenbeck semigroup $ (-1<q<1)$.
    Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2:203-220, 1999. MR 1811255 (2002d:47058)
  • [BKS] Bozejko, M., Kümmerer, B. and Speicher, R. 
    $ q$-Gaussian processes: Non-commutative and classical aspects.
    Comm. Math. Phys., 185:129-154, 1997. MR 1463036 (98h:81053)
  • [BS1] Bozejko, M. and Speicher, R. 
    An example of a generalized Brownian motion.
    Comm. Math. Phys., 137:519-531, 1991. MR 1105428 (92m:46096)
  • [BS2] Bozejko, M. and Speicher, R. 
    Interpolations between bosonic and fermionic relations given by generalized Brownian motions.
    Math. Z., 222:135-159, 1996. MR 1388006 (97g:81031)
  • [CaL] Carlen, E. and Lieb, E. 
    Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities.
    Comm. Math. Phys., 155:27-46, 1993. MR 1228524 (94h:46101)
  • [Ch] Choda, M. 
    Reduced free products of completely positive maps and entropy for free product of automorphisms.
    Publ. Res. Inst. Math. Sci., 32:371-382, 1996. MR 1382807 (97d:46077)
  • [ChE] Choi, M.D. and Effros, E. 
    Injectivity and operator spaces.
    J. Funct. Anal., 24:156-209, 1977. MR 0430809 (55:3814)
  • [CoN] Conze, J.-P. and Dang-Ngoc, N. 
    Ergodic theorems for noncommutative dynamical systems.
    Invent. Math., 46:1-15, 1978. MR 0500185 (58:17870)
  • [Cu] Cuculescu, I. 
    Martingales on von Neumann algebras.
    J. Multivariate Anal., 1:17-27, 1971. MR 0295398 (45:4464)
  • [Da] Dang-Ngoc, N. 
    Pointwise convergence of martingales in von Neumann algebras.
    Israel J. Math., 34:273-280, 1979. MR 0570886 (81g:46091)
  • [DJ1] Defant, A.  and Junge, M. 
    Maximal theorems of Menchoff-Rademacher type in non-commutative $ L\sb q$-spaces.
    J. Funct. Anal., 206:322-355, 2004. MR 2021850 (2005k:46169)
  • [DJ2] Defant, A.  and Junge, M. 
    Classical summation methods in noncommutative probability.
    In preparation.
  • [DS] Dunford, N. and Schwartz, J.T. 
    Linear Operators. I. General Theory.
    Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, 1958. MR 0117523 (22:8302)
  • [Dy] Dykema, K. 
    Factoriality and Connes' invariant $ T({\mathcal M})$ for free products of von Neumann algebras.
    J. Reine Angew. Math., 450:159-180, 1994. MR 1273959 (95d:46068)
  • [FK] Fack, Th. and Kosaki, H. 
    Generalized $ s$-numbers of $ \tau$-measurable operators.
    Pacific J. Math., 123:269-300, 1986. MR 0840845 (87h:46122)
  • [Go] Goldstein, M. S. 
    Theorems on almost everywhere convergence in von Neumann algebras.
    J. Operator Theory, 6:233-311, 1981. MR 0643693 (84g:46096)
  • [GoG] Goldstein, M. S. and Grabarnik, G. Y. 
    Almost sure convergence theorems in von Neumann algebras.
    Israel J. Math., 76:161-182, 1991. MR 1177338 (93j:46070)
  • [H1] Haagerup, U. 
    Normal weights on $ W\sp{\ast} $-algebras.
    J. Functional Analysis, 19:302-317, 1975. MR 0380438 (52:1338)
  • [H2] Haagerup, U. 
    $ L\sp{p}$-spaces associated with an arbitrary von Neumann algebra.
    In Algèbres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274 of Colloq. Internat. CNRS, 175-184. CNRS, Paris, 1979. MR 0560633 (81e:46050)
  • [H3] Haagerup, U. 
    Non-commutative integration theory.
    See also Haagerup's Lecture given at the Symposium in Pure Mathematics of the Amer. Math. Soc., Queens University, Kingston, Ontario,  1980. MR 0679691 (83j:46004a); MR 0679491 (83j:46004b)
  • [H4] Haagerup, U. 
    An example of a nonnuclear $ C\sp{\ast} $-algebra, which has the metric approximation property.
    Invent. Math., 50:279-293, 1978/79. MR 0520930 (80j:46094)
  • [Hi] Hiai, F. 
    $ q$-deformed Araki-Woods algebras.
    In Operator algebras and mathematical physics (Constanta, 2001), 169-202. Theta, Bucharest, 2003. MR 2018229 (2004j:46086)
  • [Ho] Holmstedt, T. 
    Interpolation of quasi-normed spaces.
    Math. Scand., 26:177-199, 1970. MR 0415352 (54:3440)
  • [Ja1] Jajte, R. 
    Strong limit theorems in noncommutative probability.
    Lect. Notes in Math., 1110, Springer-Verlag, Berlin, 1985. MR 0778724 (86e:46058)
  • [Ja2] Jajte, R. 
    Strong limit theorems in noncommutative $ L\sb 2$-spaces.
    Lect. Notes in Math., 1477, Springer-Verlag, Berlin, 1991. MR 1122589 (92h:46091)
  • [Ju] Junge, M. 
    Doob's inequality for non-commutative martingales.
    J. Reine Angew. Math., 549:149-190, 2002. MR 1916654 (2003k:46097)
  • [JX1] Junge, M.  and Xu, Q. 
    Théorèmes ergodiques maximaux dans les espaces $ L\sb p$ non commutatifs.
    C. R. Math. Acad. Sci. Paris, 334:773-778, 2002. MR 1905038 (2003f:46102)
  • [JX2] Junge, M.  and Xu, Q. 
    Noncommutative Burkholder/Rosenthal inequalities.
    Ann. Probab., 31:948-995, 2003. MR 1964955 (2004f:46078)
  • [JX3] Junge, M.  and Xu, Q. 
    On the best constants in certain noncommutative martingale inequalities.
    Bull. London Math. Soc., 37:243-253, 2005. MR 2119024 (2005k:46170)
  • [JX4] Junge, M.  and Xu, Q. 
    Noncommutative Burkholder/Rosenthal inequalities: Applications.
    To appear.
  • [JX5] Junge, M.  and Xu, Q. 
    Haagerup's reduction on noncommutative $ L_p$-spaces and applications.
    In preparation.
  • [Ka] Kadison, R.V. 
    A generalized Schwarz inequality and algebraic invariants for operator algebras.
    Ann. of Math., 56:494-503, 1952. MR 0051442 (14:481c)
  • [Ko] Kosaki, H. 
    Applications of the complex interpolation method to a von Neumann algebra: noncommutative $ L\sp{p}$-spaces.
    J. Funct. Anal., 56:29-78, 1984. MR 0735704 (86a:46085)
  • [Kü] Kümmerer, B. 
    A non-commutative individual ergodic theorem.
    Invent. Math., 46:139-145, 1978. MR 0482260 (58:2336)
  • [L] Lance, E.C. 
    Ergodic theorems for convex sets and operator algebras.
    Invent. Math., 37(3):201-214, 1976. MR 0428060 (55:1089)
  • [M] Mei, T. 
    Operator-valued Hardy spaces.
    Memoirs Amer. Math. Soc., to appear.
  • [Mu] Musat, M. 
    Interpolation between non-commutative BMO and non-commutative $ L_p$-spaces
    J. Funct. Anal., 202:195-225, 2003. MR 1994770 (2004g:46081)
  • [N] Nou, A. 
    Non-injectivity of the $ q$-deformed von Neumann algebra.
    Math. Ann., 330:17-38, 2004. MR 2091676 (2005k:46187)
  • [Par] Parthasarathy, K.R. 
    An introduction to quantum stochastic calculus,
    Birkhäuser Verlag, Basel, 1992. MR 1164866 (93g:81062)
  • [Pau] Paulsen, V. 
    Completely bounded maps and operator algebras,
    Cambridge Univ. Press, 2002. MR 1976867 (2004c:46118)
  • [P] Pisier, G. 
    Non-commutative vector valued $ L\sb p$-spaces and completely $ p$-summing maps.
    Astérisque, 247, 1998. MR 1648908 (2000a:46108)
  • [PX1] Pisier, G.  and Xu, Q. 
    Non-commutative martingale inequalities.
    Comm. Math. Phys., 189:667-698, 1997. MR 1482934 (98m:46079)
  • [PX2] Pisier, G.  and Xu, Q. 
    Non-commutative $ L\sp p$-spaces.
    In Handbook of the geometry of Banach spaces, Vol. 2, pages 1459-1517. North-Holland, Amsterdam, 2003. MR 1999201 (2004i:46095)
  • [Ra] Randrianantoanina, N. 
    Non-commutative martingale transforms.
    J. Funct. Anal., 194:181-212, 2002. MR 1929141 (2003m:46098)
  • [Ri] Ricard, E. 
    Factoriality of $ q$-Gaussian von Neumann algebras.
    Comm. Math. Phys., 257:659-665, 2005. MR 2164947 (2006e:46069)
  • [RX] Ricard, E.  and Xu, Q. 
    Khintchine type inequalities for free product and applications.
    J. Reine Angew. Math., to appear.
  • [Sh] Shlyakhtenko, D. 
    Free quasi-free states.
    Pacific J. Math., 177:329-368, 1997. MR 1444786 (98b:46086)
  • [Ska] Skalsi, A. 
    On a classical scheme in noncommutative multiparameter ergodic theory.
    preprint.
  • [Sta] Starr, N. 
    Operator limit theorems.
    Trans. Amer. Math. Soc., 121:90-111, 1966. MR 0190757 (32:8167)
  • [St1] Stein, E.M. 
    On the maximal ergodic theorem.
    Proc. Nat. Acad. Sci. U.S.A., 47:1894-1897, 1961. MR 0131517 (24:A1367)
  • [St2] Stein, E.M. 
    Topics in harmonic analysis related to the Littlewood-Paley theory.
    Annals of Mathematics Studies, No. 63. Princeton Univ. Press, Princeton, N.J., 1985. MR 0252961 (40:6176)
  • [Te] Terp, M. 
    $ L_p$ spaces associated with von Neumann algebras.
    Notes, Math. Institute, Copenhagen Univ., 1981.
  • [V] Voiculescu, D. 
    Symmetries of some reduced free product $ C\sp \ast$-algebras.
    In Operator algebras and their connections with topology and ergodic theory (Busteni, 1983). Lect. Notes in Math. 1132:556-588, 1985. MR 0799593 (87d:46075)
  • [VDN] Voiculescu, D., Dykema, K. and Nica, A. 
    Free random variables, vol. 1 of CRM Monograph Series.
    Amer. Math. Soc., Providence, RI, 1992. MR 1217253 (94c:46133)
  • [X] Xu, Q. 
    Recent development on noncommutative martingale inequalities.
    Proceedings of International Conference on function space and its applications, Wuhan 2003; pp. 283-313. Research Information Ltd UK, 2004.
  • [Ye] Yeadon, F.J. 
    Ergodic theorems for semifinite von Neumann algebras. I.
    J. London Math. Soc. (2), 16(2):326-332, 1977. MR 0487482 (58:7111)
  • [Yo] Yosida, K. 
    Functional analysis.
    Second edition. Springer-Verlag, New York, 1968. MR 0239384 (39:741)
  • [Z] Zygmund, A. 
    Trigonometric series. Vols. I, II.
    Cambridge Univ. Press, third edition, 2002. MR 1963498 (2004h:01041)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 46L53, 46L55, 46L50, 37A99

Retrieve articles in all journals with MSC (2000): 46L53, 46L55, 46L50, 37A99


Additional Information

Marius Junge
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
Email: junge@math.uiuc.edu

Quanhua Xu
Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 16 rue de Gray, 25030 Besançon, Cedex, France
Email: qx@math.univ-fcomte.fr

DOI: https://doi.org/10.1090/S0894-0347-06-00533-9
Keywords: Noncommutative $L_p$-spaces, maximal ergodic theorems, individual ergodic theorems
Received by editor(s): March 5, 2005
Published electronically: May 18, 2006
Additional Notes: The first author was partially supported by the National Science Foundation grant DMS-0301116
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society