Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

   
 
 

 

Unitary Shimura correspondences for split real groups


Authors: J. Adams, D. Barbasch, A. Paul, P. Trapa and D. A. Vogan Jr.
Journal: J. Amer. Math. Soc. 20 (2007), 701-751
MSC (2000): Primary 22E46
DOI: https://doi.org/10.1090/S0894-0347-06-00530-3
Published electronically: April 11, 2006
MathSciNet review: 2291917
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find a relationship between certain complementary series representations for nonlinear coverings of split simple groups, and spherical complementary series for (different) linear groups. The main technique is Barbasch's method of calculating some intertwining operators purely in terms of the Weyl group.


References [Enhancements On Off] (What's this?)

  • [A] J. Adams, Nonlinear covers of real groups, Int. Math. Res. Not. 75 (2004), 4031-4047. MR 2112326 (2006c:20096)
  • [AB] J. Adams, D. Barbasch, Genuine representations of the metaplectic group, Compositio Math. 113 (1998), 23-66. MR 1638210 (99h:22013)
  • [BV0] D. Barbasch, D. A. Vogan, Jr., The local structure of characters, J. Func. Anal. 37 (1980), 27-55. MR 0576644 (82e:22024)
  • [Ba1] D. Barbasch, Spherical unitary dual of split classical groups, preprint. Available at http://www.math.cornell.edu/$ \sim$barbasch/.
  • [Ba2] D. Barbasch, Relevant and petite $ K$-types for split groups, Functional analysis VIII, 35-71, Various Publ. Ser. (Aarhus), 47, Aarhus Univ., Aarhus, 2004. MR 2127163 (2006d:22020)
  • [Bo] N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4, 5, et 6, Masson, Paris, 1981. MR 0647314 (83g:17001)
  • [CMc] D. Collingwood, W. M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, New York, 1993. MR 1251060 (94j:17001)
  • [Ci] D. Ciubotaru, The unitary $ \mathbb{I}$-spherical dual for split $ p$-adic groups of type $ F_4$, Represent. Theory 9 (2005), 94-137. MR 2123126 (2005k:22022)
  • [CR] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York, 1981. MR 0632548 (82i:20001)
  • [H0] R. Howe, Wave front sets of representations of Lie groups, in Automorphic Forms, Representation Theory, and Arithmetic, Tata Inst. Fund. Res. Studies in Math., volume 10. Tata Institute for Fundamental Research, Bombay, 1981. MR 0633659 (83c:22014)
  • [H1] R. Howe, On a notion of rank for unitary representations of the classical groups, in Harmonic analysis and group representations, 223-331, Liguori (Naples) 1982. MR 0777342 (86j:22016)
  • [H2] R. Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), 535-552. MR 0985172 (90k:22016)
  • [Hu1] J.-S. Huang, The unitary dual of the universal covering group of $ {\rm GL}(n,\mathbb{R})$, Duke Math. J. 61 (1990), 705-745. MR 1084456 (92f:22026)
  • [Hu2] J.-S. Huang, Metaplectic correspondences and unitary representations, Compositio Math. 80 (1991), 309-322. MR 1134258 (93d:22021)
  • [Kn] A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton Mathematical Series 36, Princeton University Press, Princeton, New Jersey, 1986. MR 0855239 (87j:22022)
  • [Li1] J.-S. Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), 237-255. MR 1001840 (90h:22021)
  • [Li2] J.-S. Li, On the classification of irreducible low rank unitary representations of classical groups. Compositio Math. 71 (1989), 29-48.MR 1008803 (90k:22027)
  • [Li3] J.-S. Li, Unipotent representations attached to small nilpotent orbits, unpublished lecture notes from a 1997 AMS conference in Seattle, available at http://www.math.umd. edu/$ \sim$jda/seattle_proceedings/.
  • [Li4] J.-S. Li, On the singular rank of a representation, Proc. Amer. Math. Soc. 106 (1989), 567-571.MR 0961413 (89k:22029)
  • [Ma] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Ecole Norm. Sup. 2 (1969), 1-62. MR 0240214 (39:1566)
  • [Pr] T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), 93-102. MR 1373285 (96m:22034)
  • [Sal] S. Salamanca, The unitary dual of some classical Lie groups, Compositio Math. 68 (1988), 251-303. MR 0971329 (89m:22018)
  • [Sa] G. Savin, Local Shimura correspondence, Math. Ann. 280 (1988), 185-190. MR 0929534 (89h:22018)
  • [Sa2] G. Savin, On unramified representations of covering groups, J. Reine Angew. Math. 566 (2004), 111-134. MR 2039325 (2005a:22014)
  • [Sc] W. Schmid, ``On the characters of the discrete series (the Hermitian symmetric case)'', Invent. Math. 30 (1975), 47-144. MR 0396854 (53:714)
  • [St] R. Steinberg, Générateurs, relations, et revêtements de groupes algébriques, 113-127 in Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962). Librairie Universitaire, Louvain, 1962.MR 0153677 (27:3638)
  • [V0] D. A. Vogan, Jr., The algebraic structure of the representations of semisimple Lie groups I, Ann. Math. 109 (1979), 1-60. MR 0519352 (81j:22020)
  • [V2] D. A. Vogan, Jr., The unitary dual of $ {\rm GL}(n)$ over an Archimedean field, Invent. Math. 83 (1986), 449-505. MR 0827363 (87i:22042)
  • [V3] D. A. Vogan, Jr., The unitary dual of $ \mathrm{G}_2$, Invent. Math. 116 (1994), 677-791. MR 1253210 (95b:22037)
  • [V4] D. A. Vogan, Jr., Representations of Real Reductive Lie Groups, Progress in Mathematics 15, Birkhäuser, Boston, 1981. MR 0632407 (83c:22022)
  • [W] N. R. Wallach, Real Reductive Groups II, Academic Press, San Diego, 1992.MR 1170566 (93m:22018)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 22E46

Retrieve articles in all journals with MSC (2000): 22E46


Additional Information

J. Adams
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email: jda@math.umd.edu

D. Barbasch
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
Email: barbasch@math.cornell.edu

A. Paul
Affiliation: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
Email: paula@wmich.edu

P. Trapa
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Email: ptrapa@math.utah.edu

D. A. Vogan Jr.
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02138
Email: dav@math.mit.edu

DOI: https://doi.org/10.1090/S0894-0347-06-00530-3
Keywords: Complementary series
Received by editor(s): September 6, 2005
Published electronically: April 11, 2006
Additional Notes: The first author was supported in part by NSF grant 0532393
The second author was supported in part by NSF grants 0070561 and 0300172
The fourth author was supported in part by NSF grant 0300106
The fifth author was supported in part by NSF grants 9721441 and 0532088
This work began during a visit in 2002 to the Institute for Mathematical Sciences, National University of Singapore. The visit was supported by the Institute and the National University of Singapore. We are grateful to our colleagues at NUS for their generous hospitality.
Article copyright: © Copyright 2006 by J. Adams, D. Barbasch, A. Paul, P. Trapa, and D. A. Vogan, Jr.

American Mathematical Society