Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Convergence of Kähler-Ricci flow

Authors: Gang Tian and Xiaohua Zhu
Journal: J. Amer. Math. Soc. 20 (2007), 675-699
MSC (2000): Primary 53C25; Secondary 32J15, 53C55, 58E11
Published electronically: November 17, 2006
MathSciNet review: 2291916
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove a theorem on convergence of Kähler-Ricci flow on a compact Kähler manifold which admits a Kähler-Ricci soliton.

References [Enhancements On Off] (What's this?)

  • [AT] Alexander, H.J. and Taylor, B.A., Comparison of two capacities in $ \mathbb{C}^{n}$, Math. Z., 186 (1984), 407-417. MR 0744831 (85k:32034)
  • [BT] Bedford, E. and Taylor, B.A., A new capacity for plursubharmonic functions, Acta Math., 149 (1982), 1-40. MR 0674165 (84d:32024)
  • [Ca] Cao, H.D., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81 (1985), 359-372. MR 0799272 (87d:58051)
  • [CT1] Chen, X.X. and Tian, G., Ricci flow on Kähler-Einstein surfaces, Invent. Math., 147 (2002), 487-544.MR 1893004 (2003c:53095)
  • [CT2] Chen, X.X. and Tian, G., Ricci flow on Kähler-Einstein manifolds, Duke Math. J., 131 (2006), 17-73.MR 2219236
  • [CTZ] Cao, H.D., Tian, G., and Zhu, X.H., Kähler-Ricci solitons on compact Kähler manifolds with $ c_{1}(M)>0$, Geom and Funct. Anal., 15 (2005), 697-719.MR 2221147
  • [F1] Futaki, A., An obstruction to the existence of Kähler-Einstein metrics, Invent. Math., 73 (1983), 437-443. MR 0718940 (84j:53072)
  • [F2] Futaki, A., Kähler-Einstein metrics and integral invariants, Lecture Notes in Math, 1314 (1988), Springer-Verlag, Berlin, New-York.MR 0947341 (90a:53053)
  • [Ha] Hamilton, R.S., Three manifolds with positive Ricci Curvature, J. Diff. Geom., 17 (1982), 255-306. MR 0664497 (84a:53050)
  • [KL] Kleiner. B. and Lott, J., Notes on Perelman's papers, preprint, 2003.
  • [Ko] Kolodziej, S., The complex Monge-Ampère equation, Acta Math., 180 (1998), 69-117. MR 1618325 (99h:32017)
  • [Ma] Mabuchi, T., K-energy maps integrating Futaki invariants, Tohöku Math. J., 38 (1986), 245-257. MR 0867064 (88b:53060)
  • [P1] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, preprint, 2002.
  • [P2] Perelman, G., unpublished.
  • [ST] Sesum, N. and Tian, G., Perelman's argument for uniform bounded scalar curvature and diameter along the Kähler-Ricci flow, preprint, 2005.
  • [Ti] Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130 (1997), 1-37. MR 1471884 (99e:53065)
  • [TZ1] Tian, G. and Zhu, X.H., Uniqueness of Kähler-Ricci solitons, Acta Math., 184 (2000), 271-305. MR 1768112 (2001h:32040)
  • [TZ2] Tian, G. and Zhu, X.H., A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comm. Math. Helv., 77 (2002), 297-325.MR 1915043 (2003i:32042)
  • [Ya] Yau, S.T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., 31 (1978), 339-411.MR 0480350 (81d:53045)
  • [Zh] Zhu, X.H., Kähler-Ricci soliton type equations on compact complex manifolds with $ C_{1}(M)>0$, J. Geom. Anal., 10 (2000), 759-774.MR 1817785 (2002c:32042)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53C25, 32J15, 53C55, 58E11

Retrieve articles in all journals with MSC (2000): 53C25, 32J15, 53C55, 58E11

Additional Information

Gang Tian
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Xiaohua Zhu
Affiliation: Department of Mathematics, Peking University, Beijing, 100871, People’s Republic of China

Received by editor(s): August 29, 2005
Published electronically: November 17, 2006
Additional Notes: The first author was partially supported by an NSF grant and a Simon fund
The second author was partially supported by NSF grant 10425102 in China and a Huo Y-D fund
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society