Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

An algebro-geometric proof of Witten's conjecture


Authors: M. E. Kazarian and S. K. Lando
Journal: J. Amer. Math. Soc. 20 (2007), 1079-1089
MSC (2000): Primary 14H70; Secondary 14H10
DOI: https://doi.org/10.1090/S0894-0347-07-00566-8
Published electronically: March 23, 2007
MathSciNet review: 2328716
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new proof of Witten's conjecture. The proof is based on the analysis of the relationship between intersection indices on moduli spaces of complex curves and Hurwitz numbers enumerating ramified coverings of the $ 2$-sphere.


References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges, Funct. Anal. and its Appl., 30, no. 1 (1996), 1-14. MR 1387484 (97d:32053)
  • 2. E. Date, M. Kashivara, M. Jimbo, T. Miwa, Transformation groups for soliton equations, Proc. of RIMS Symposium on Non-Linear Integrable Systems, Singapore, World Science Publ. Co., 1983, pp. 39-119. MR 725700 (86a:58093)
  • 3. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109. MR 0262240 (41:6850)
  • 4. T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci. Paris Sér I Math., 328 (1999), 1175-1180. MR 1701381 (2001b:14083)
  • 5. T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., 146 (2001), 297-327. MR 1864018 (2002j:14034)
  • 6. I. P. Goulden, D. M. Jackson, Transitive factorisation into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc., 125, no. 1 (1997), 51-60. MR 1396978 (97j:05007)
  • 7. I. P. Goulden, D. M. Jackson, R. Vakil, The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals, Proc. London Math. Soc. (3), 83 (2001), 563-581. MR 1851082 (2002h:14043)
  • 8. V. Kac, A. Schwarz, Geometric interpretation for the partition function of $ 2$D gravity, Phys. Lett. B, 257, no. 3-4 (1991), 329-334. MR 1100639 (93b:58066)
  • 9. M. Kontsevich, Intersection theory on the moduli space of curves and the Airy function, Comm. Math. Phys., 147 (1992), 1-23. MR 1171758 (93e:32027)
  • 10. S. K. Lando, A. K. Zvonkin, Graphs on surfaces and their applications, Springer, Berlin, 2004. MR 2036721 (2005b:14068)
  • 11. M. Mirzakhani, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc., 20, no. 1 (2007), 1-23. MR 2257394
  • 12. A. Okounkov, Toda equations for Hurtwitz numbers, Math. Res. Lett. 7, no. 4 (2000), 447-453. MR 1783622 (2001i:14047)
  • 13. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and matrix models I, math.AG/0101147 (2001).
  • 14. R. Pandharipande, The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys., 53, no. 1 (2000), 59-74. MR 1799843 (2001j:14074)
  • 15. M. Sato, Y. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Nonlinear partial differential equations in applied science, North-Holland, Amsterdam, 1983, pp. 259-271. MR 730247 (86m:58072)
  • 16. G. Segal, G. Wilson, Loop groups and equations of the KdV type, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5-65. MR 783348 (87b:58039)
  • 17. S. V. Shadrin, Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Notes, 38 (2003), 2051-2094. MR 1994776 (2004h:14032)
  • 18. E. Witten, Two-dimensional gravity and intersection theory on moduli spaces, Surveys in Differential Geometry, 1 (1991), 243-269. MR 1144529 (93e:32028)
  • 19. D. Zvonkine, Enumeration of ramified coverings of the sphere and $ 2$-dimensional gravity, math.AG/0506248 (2005).

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14H70, 14H10

Retrieve articles in all journals with MSC (2000): 14H70, 14H10


Additional Information

M. E. Kazarian
Affiliation: Steklov Institute of Mathematics, Russian Academy of Sciences, 8 Gubkina Street, Moscow, 117966 Russia, and The Poncelet Laboratory, Independent University of Moscow, 11, Bolshoy Vlasyevskiy Pereulok, Moscow, 121002 Russia
Email: kazarian@mccme.ru

S. K. Lando
Affiliation: Institute for System Research, Russian Academy of Sciences, Nakhimovskii pr., 36 korp. 1, Moscow, 117218 Russia, and The Poncelet Laboratory, Independent University of Moscow, 11, Bolshoy Vlasyevskiy Pereulok, Moscow, 121002 Russia
Email: lando@mccme.ru

DOI: https://doi.org/10.1090/S0894-0347-07-00566-8
Keywords: Algebraic curves, moduli spaces, Witten conjecture, Hurwitz numbers, KP equation
Received by editor(s): August 5, 2005
Published electronically: March 23, 2007
Additional Notes: The first author was supported in part by the grants RFBR 04-01-00762, RFBR 05-01-01012-a, NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.
The second author was supported in part by the grants ACI-NIM-2004-243 (Noeuds et tresses), RFBR 05-01-01012-a, NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society