Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Edge coloring models and reflection positivity

Author: Balázs Szegedy
Journal: J. Amer. Math. Soc. 20 (2007), 969-988
MSC (2000): Primary 05C99; Secondary 82B99
Published electronically: May 31, 2007
MathSciNet review: 2328712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Solving a conjecture of M. H. Freedman, L. Lovász and A. Schrijver, we prove that a graph parameter is edge reflection positive and multiplicative if and only if it can be represented by an edge coloring model.

References [Enhancements On Off] (What's this?)

  • 1. M. Atiyah: The geometry and physics of knots, Cambridge University Press, Cambridge, 1990. MR 1078014 (92b:57008)
  • 2. J. Bochnak, M. Coste, M. Roy: Real algebraic geometry, Springer-Verlag, Berlin, 1998. MR 1659509 (2000a:14067)
  • 3. M. H. Freedman, A. Kitaev, C. Nayak, J. Slingerland, K. Walker, Zhenghan Wang: Universal manifold pairings and positivity, Geom. Topol. 9 (2005), 2303-2317. MR 2209373 (2006k:57080)
  • 4. M. H. Freedman, L. Lovász, A. Schrijver: Reflection positivity, rank connectivity, and homomorphism of graphs, J. Amer. Math. Soc. 20 (2007), 37-51. MR 2257396
  • 5. Personal communication with M.H. Freedman, L. Lovász, A. Schrijver.
  • 6. L. Lovász: The rank of connection matrices and the dimension of graph algebras, European J. Combin. 27 (2006), 962-970. MR 2226430 (2007e:05101)
  • 7. L. Lovász and B. Szegedy: Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006), 933-957. MR 2274085
  • 8. H. Weyl: The Classical Groups, their Invariants and Representations, Princeton Mathematical Series, vol. 1, Princeton Univ. Press, Princeton, 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 05C99, 82B99

Retrieve articles in all journals with MSC (2000): 05C99, 82B99

Additional Information

Balázs Szegedy
Affiliation: Microsoft Research, One Microsoft Way, Redmond, Washington 98052

Received by editor(s): May 2, 2005
Published electronically: May 31, 2007
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society