Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The local Gromov-Witten theory of curves


Authors: Jim Bryan and Rahul Pandharipande; \break with an appendix by Jim Bryan; C. Faber; A. Okounkov; Rahul Pandharipande
Journal: J. Amer. Math. Soc. 21 (2008), 101-136
MSC (2000): Primary 14N35
DOI: https://doi.org/10.1090/S0894-0347-06-00545-5
Published electronically: December 6, 2006
MathSciNet review: 2350052
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The local Gromov-Witten theory of curves is solved by localization and degeneration methods. Localization is used for the exact evaluation of basic integrals in the local Gromov-Witten theory of $ \mathbb{P}^1$. A TQFT formalism is defined via degeneration to capture higher genus curves. Together, the results provide a complete and effective solution.

The local Gromov-Witten theory of curves is equivalent to the local Donaldson-Thomas theory of curves, the quantum cohomology of the Hilbert scheme points of $ \mathbb{C}^2$, and the orbifold quantum cohomology of the symmetric product of $ \mathbb{C}^2$. The results of the paper provide the local Gromov-Witten calculations required for the proofs of these equivalences.


References [Enhancements On Off] (What's this?)

  • 1. M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, Black holes, $ q$-deformed 2d Yang-Mills, and non-perturbative topological strings, Nuclear Phys. B 715 (2005), 304-348. MR 2135642 (2006e:81264)
  • 2. J. Bryan and T. Graber, The crepant resolution conjecture, math.AG/0610129.
  • 3. J. Bryan and R. Pandharipande, On the rigidity of stable maps to Calabi-Yau threefolds, Proceedings of the BIRS workshop on the interaction of finite type and Gromov-Witten invariants, Geometry and Topology Monographs, Vol. 8 (2006), pp. 97-104.
  • 4. J. Bryan and R. Pandharipande, BPS states of curves in Calabi-Yau 3-folds, Geom. Topol. 5 (2001), 287-318. MR 1825668 (2002h:14092)
  • 5. J. Bryan and R. Pandharipande, Curves in Calabi-Yau 3-folds and Topological Quantum Field Theory, Duke J. 126 (2005), 369-396. MR 2115262 (2005k:14117)
  • 6. R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), 393-429,MR 1048699 (91g:81133)
  • 7. Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000), 560-673. MR 1826267 (2002e:53136)
  • 8. C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173-199. MR 1728879 (2000m:14057)
  • 9. C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring (with an appendix by D. Zagier), Michigan Math. J. 48 (2000), 215-252. MR 1786488 (2002e:14041)
  • 10. D. Freed and F. Quinn, Chern-Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993), 435-472. MR 1240583 (94k:58023)
  • 11. T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), 487-518. MR 1666787 (2000h:14005)
  • 12. E.-N. Ionel and T. Parker, Relative Gromov-Witten invariants, Ann. of Math. 157 (2003), 45-96. MR 1954264 (2004a:53112)
  • 13. E.-N. Ionel and T. Parker, The symplectic sum formula for Gromov-Witten invariants, Ann. of Math. 159 (2004), 935-1025.MR 2113018 (2006b:53110)
  • 14. J. Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts 59, Cambridge University Press, Cambridge, 2004. MR 2037238 (2005a:57028)
  • 15. A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151-218.MR 1839289 (2002g:53158)
  • 16. J. Li, Stable morphisms to singular schemes and relative stable morphisms, JDG 57 (2001), 509-578. MR 1882667 (2003d:14066)
  • 17. J. Li, A degeneration formula of GW-invariants, JDG 60 (2002), 199-293.MR 1938113 (2004k:14096)
  • 18. E. Looijenga.
    On the tautological ring of $ {M}\sb g$.
    Invent. Math. 121 (1995), 411-419.MR 1346214 (96g:14021)
  • 19. I. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1995. MR 1354144 (96h:05207)
  • 20. D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory I (to appear in Comp. Math.), math.AG/0312059.
  • 21. D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory II (to appear in Comp. Math.), math.AG/0406092.
  • 22. A. Okounkov and R. Pandharipande, Hodge integrals and invariants of the unknot, Geom. Top. 8 (2004), 675-699.MR 2057777 (2006c:14041)
  • 23. A. Okounov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Annals of Math. (2) 163 (2006), 517-560. MR 2199225
  • 24. A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, math.AG/0411120.
  • 25. A. Okounkov and R. Pandharipande, Local Donaldson-Thomas theory of curves, math.AG/0512573.
  • 26. R. Pandharipande, Hodge integrals and degenerate contributions, Comm. Math. Phys. 208 (1999), 489-506.MR 1729095 (2002k:14087)
  • 27. R. Pandharipande, The Toda equation and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Physics 53 (2000), 59-74.MR 1799843 (2001j:14074)
  • 28. R. Pandharipande, Three questions in Gromov-Witten theory, Proceedings of the International Congress of Mathematicians, Vol. II, 503-512, Higher Ed. Press, Beijing, 2002. MR 1957060 (2003k:14069)
  • 29. R. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, JDG 54 (2000), 367-438. MR 1818182 (2002b:14049)
  • 30. C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14N35

Retrieve articles in all journals with MSC (2000): 14N35


Additional Information

Jim Bryan
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
Email: jbryan@math.ubc.ca

Rahul Pandharipande
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email: rahulp@math.princeton.edu

C. Faber
Affiliation: Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden
Email: faber@math.jhu.edu

A. Okounkov
Affiliation: Department of Mathematics, Princeton University, Washington Road Fine Hall, Princeton, NJ 08544
Email: okounkov@math.princeton.edu

DOI: https://doi.org/10.1090/S0894-0347-06-00545-5
Received by editor(s): December 5, 2005
Published electronically: December 6, 2006
Additional Notes: The first author was partially supported by the NSERC, the Clay Institute, and the Aspen Institute.
The second author was partially supported by the Packard foundation and the NSF
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society