ERRATA TO
“TOTALLY POSITIVE TOEPLITZ MATRICES AND QUANTUM COHOMOLOGY OF PARTIAL FLAG VARIETIES”

KONSTANZE RIETSCH

Correction to the Proof of Theorem 4.2. The text in [38] from Remark 4.3 at the bottom of p. 374 to line 8 on p. 375 should be replaced with the following. We use the same notation as in [38].

Remark 4.3. If P is the parabolic subgroup, then G^m_j is a well-defined (regular) function on the Bruhat cell $B^+w_PB^-/B^-$ precisely in the case $m \in I^P = \{n_1, \ldots, n_k\}$.

Proof of Theorem 4.2. (1) is proved in [33]. See also Lemma 2.3 in [35]. We will deduce (2) very explicitly from the ASK presentation. We begin by defining a particular system of coordinates on the affine space $B^+w_PB^-/B^-$. For indexing purposes introduce sets $\Omega, \Omega_1, \Omega_2$ defined by

$$
\Omega := \{(r, m) \in \mathbb{Z}^2 \mid n_1 \leq r < n, \text{ and } 1 \leq m \leq n_1 \text{ if } n_1 \leq r < n_{1+1}\},
$$

$$
\Omega_1 := \{(n_l, m) \in \mathbb{Z}^2 \mid \text{ where } l \in \{1, \ldots, k\} \text{ and } 1 \leq m \leq n_l\},
$$

and $\Omega_2 := \Omega \setminus \Omega_1$. Consider the polynomial rings $\mathbb{C}[\Omega] := \mathbb{C}[g_r^m; (r, m) \in \Omega]$ and $\mathbb{C}[\Omega_i] := \mathbb{C}[g_r^m; (r, m) \in \Omega_i]$ for $i = 1, 2$. We have $n \times (n_{l+1} - n_l)$-matrices $U^{(l)}_{\Omega_1}$ over $\mathbb{C}[\Omega_1]$ defined by

$$
U^{(0)}_{\Omega_1} = \begin{pmatrix}
1 & g_1^{n_1} & g_2^{n_1} & \cdots & g_{n_1}^{n_1 - 1} \\
0 & 1 & g_1^{n_1} & \cdots & \\
& & \ddots & \ddots & \\
& & & \ddots & g_1^{n_1} \\
& & & & 1
\end{pmatrix},
$$

$$
U^{(l)}_{\Omega_1} = \begin{pmatrix}
g_{n_1}^{n_1} & \cdots & \cdots & \cdots \\
\vdots & \ddots & \ddots & \cdots \\
& & g_1^{n_1} & \cdots \\
0 & \cdots & 1 & g_1^{n_1} \\
0 & \cdots & \cdots & 0
\end{pmatrix},
$$

Received by the editors September 23, 2005.

2000 Mathematics Subject Classification. Primary 20G20, 15A48, 14N35, 14N15.

Key words and phrases. Flag varieties, quantum cohomology.

During the writing of this errata article the author was funded by a Royal Society Dorothy Hodgkin Research Fellowship and was visiting the University of Waterloo, Canada.

©2007 American Mathematical Society
Reverts to public domain 28 years from publication

611
where $1 \leq l \leq k$. Furthermore we define $n \times (n_{l+1} - n_l)$-matrices $U_{\Omega_2}^{(l)}$ over $\mathbb{C}[\Omega_2]$ by

$$U_{\Omega_2}^{(l)} = \begin{pmatrix}
0 & g_{n_l}^{n_{l+1}} & g_{n_l}^{n_{l+2}} & \ldots & g_{n_l}^{n_{l+1}} - 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & g_{2}^{n_{l+1}} & g_{2}^{n_{l+2}} & \ldots & g_{2}^{n_{l+1}} - 1 \\
0 & g_{1}^{n_{l+1}} & g_{1}^{n_{l+2}} & \ldots & g_{1}^{n_{l+1}} - 1 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0
\end{pmatrix},$$

for $1 \leq l \leq k$ and $U_{\Omega_2}^{(0)} = 0$. The matrices defined above combine to $n \times n$ matrices

$$u_{\Omega_i} = \begin{pmatrix}
U_{\Omega_i}^{(0)} & U_{\Omega_i}^{(1)} & \cdots & U_{\Omega_i}^{(k)}
\end{pmatrix},$$

for $i = 1, 2$. Moreover we have

$$u_{\Omega} := u_{\Omega_1} + u_{\Omega_2},$$

which is an element of U^+ over $\mathbb{C}[\Omega]$, or equivalently a morphism $u_{\Omega} : \mathbb{C}[\Omega] \to U^+$. Composing u_{Ω} with the standard projection $U^+ \to B^+ w_P B^- / B^-$ defines a map

$$\mathbb{C}[\Omega] \to B^+ w_P B^- / B^-;$$

$$z \mapsto u_{\Omega}(z)w_P B^-.$$

It is clear that this map is an isomorphism. So we may use it to identify the coordinate ring $\mathbb{C}[B^+ w_P B^- / B^-]$ with $\mathbb{C}[\Omega]$. Note that $G_j^{m_j}$ goes to $g_j^{m_j}$ under this identification. Let $\mathcal{I}_P \subset \mathbb{C}[\Omega]$ denote the defining ideal for \mathcal{Y}_P.

Claim. We have $g_{m}^{r} \in \mathcal{I}_P$ for all $(r, m) \in \Omega_2$, or equivalently $u_{\Omega_2} \equiv 0 \mod \mathcal{I}_P$.

Let v_1, \ldots, v_n be the standard basis of \mathbb{C}^n and $(,)$ the bilinear form given by $(v_i, v_j) = \delta_j^i$. From the definition of the Peterson variety it follows that the ideal \mathcal{I}_P is generated by the elements

$$(u_{\Omega}^{-1} f u_{\Omega} \cdot v_r, v_h) \in \mathbb{C}[\Omega],$$

where $(r, h) \in \Omega_2$ or $r = n_{l+1}$ and $h \in [1, n_l] \setminus \{n_{l-1} + 1\}$, for $l = 1, \ldots, k$. Let $<$ be the lexicographical ordering on Ω_2. We will prove the claim recursively. Consider $(r, m) \in \Omega_2$. Then there is an $l \in \{1, \ldots, k\}$ such that $n_l < r < n_{l+1}$ and $1 \leq m \leq n_l$, and we consider the generator

$$(u_{\Omega}^{-1} f u_{\Omega} \cdot v_r, v_{n_l - m + 1}) \in \mathcal{I}_P.$$
Note first that \(n_l < r < n_{l+1} \) implies \(f u_{\Omega_1} \cdot v_r = u_{\Omega_1} \cdot v_{r+1} \). Therefore
\[
(u_{\Omega}^{-1} f u_{\Omega} \cdot v_r, v_{n_l - m + 1}) = (u_{\Omega}^{-1} f u_{\Omega_1} \cdot v_r, v_{n_l - m + 1}) + (u_{\Omega}^{-1} f u_{\Omega_2} \cdot v_r, v_{n_l - m + 1})
\]
\[
= (u_{\Omega}^{-1} u_{\Omega_1} \cdot v_{r+1}, v_{n_l - m + 1}) + (u_{\Omega}^{-1} f u_{\Omega_2} \cdot v_r, v_{n_l - m + 1})
\]
\[
= 0 - (u_{\Omega}^{-1} u_{\Omega_2} \cdot v_{r+1}, v_{n_l - m + 1}) + (u_{\Omega}^{-1} f u_{\Omega_2} \cdot v_r, v_{n_l - m + 1})
\].
Now
\[
u_{\Omega_2} \cdot v_r = \begin{cases}
0 & \text{if } r = n_l + 1, \\
g_r^{-1} v_1 + g_r^{-1} v_2 + \ldots + g_r^{-1} v_{n_l} & \text{otherwise.}
\end{cases}
\]
Therefore
\[
(u_{\Omega}^{-1} f u_{\Omega_2} \cdot v_r, v_{n_l - m + 1}) \equiv 0 \mod (g_h^r)_{(t,h)<(r,m)}.
\]
Since \(u_{\Omega_2} \cdot v_{r+1} = g_r v_1 + g_r^{-1} v_2 + \ldots + g_r^{-1} v_{n_l} \) and \(u_{\Omega} \) is upper-triangular, we have all in all
\[
(u_{\Omega}^{-1} f u_{\Omega} \cdot v_r, v_{n_l - m + 1}) \equiv - \sum_{j=1}^m g_j^r (u_{\Omega}^{-1} \cdot v_{n_l - j+1}, v_{n_l - m + 1}) + 0
\]
\[
\equiv -g_m^r (u_{\Omega}^{-1} \cdot v_{n_l - m+1}, v_{n_l - m+1}) \equiv -g_m^r \mod (g_h^r)_{(t,h)<(r,m)}.
\]
For the minimal element \((n_l + 1, 1)\) in \(\Omega_2 \) in particular this implies
\[
(u_{\Omega}^{-1} f u_{\Omega} \cdot v_{n_l+1}, v_{n_l}) = -g_1^{n_l+1},
\]and so \(g_1^{n_l+1} \) lies in \(I_P \). By induction it follows that all \(g_m^r \) for \((r,m) \in \Omega_2 \) lie in \(I_P \), and the claim is proved.

We have thus shown that \(\mathcal{Y}_P \) lies in the subvariety \(\mathcal{Y}_{\Omega_2} \) of \(B^+ w_P B^- / B^- \) defined by the ideal \(I_{\Omega_2} = (g_h^r)_{(t,h) \in \Omega_2} \). Its coordinate ring \(\mathcal{O}(\mathcal{Y}_{\Omega_2}) = \mathbb{C}[\Omega] / I_{\Omega_2} \) can be identified with the polynomial ring \(\mathbb{C}[g_i^h; (t,h) \in \Omega_1] \), or equivalently with \(\mathbb{C}[G_1^{n_1}, \ldots, G_{n_k}^{n_k}] \), where the \(G_j^m \) now denote restrictions to the affine space \(\mathcal{Y}_{\Omega_2} \) of the functions defined in (4.4). We furthermore let \(u \) be the restriction of \(u_{\Omega} \) to \(\mathcal{Y}_{\Omega_2} \), viewing \(u \) as an element of \(U^+ (\mathbb{C}[G_1^{n_1}, \ldots, G_{n_k}^{n_k}]) \). Also, we let \(J_P \) denote the ideal defining \(\mathcal{Y}_P \) inside \(\mathbb{C}[G_1^{n_1}, \ldots, G_{n_k}^{n_k}] \).

With this, the rest of the proof proceeds as in paragraph 2 on p. 375 in [38]. Only on line 14 of p. 375 we also need to change the morphism \(B^+ w_P B^- / B^- \rightarrow \mathfrak{g} \) to \(\mathfrak{gl}_n \).

Further minor corrections.

(1) In (3.4) and (3.6) replace the exponent “\(n_1 \)” with “\(n_2 - n_1 \)” and the exponent “\(n_k - n_{k-1} \)” with “\(n - n_k \)”. Similarly for the subscripts in the displayed equation after (3.4).

(2) In line 2 of paragraph 5 of Section 3.4 replace “at most \((n_j - n_{j-1}) \) parts” with “at most \((n_{j+1} - n_j) \) parts”.

(3) In line 6 of Section 3.7 replace \(\lambda_i \) with \(\lambda_{d-i+1} \).

(4) Replace \(t \) with \(t^{-1} \) everywhere in displayed equation (5.2).

(5) In point (6) of Section 8 replace “\(q(u(x_1, \ldots, x_n)) \)” with “\(q(u(x_1, \ldots, x_d)) \)”.

(6) In the second displayed equation in the proof of Lemma 8.1, insert exponents:
\[
\sigma_{w_P}^P = (\sigma_{s_1 \cdots s_{n_1}}^{P})^{n_2 - n_1} \cdot (\sigma_{s_1 \cdots s_{n_2}}^{P})^{n_3 - n_2} \cdots (\sigma_{s_1 \cdots s_{n_k}}^{P})^{n - n_k}.
\]
(7) Two paragraphs down from (6) in Section 8, add the words “in type A” to read: “Peterson has announced in [33] that all the quantum cohomology rings $qH^*(G/P)$ in type A are reduced.”

(8) The statement of Corollary 11.4(2) should be replaced with: “If $y \in X_{P,>0}$ and $\sigma_w^P(y) \geq 0$ for all $w \in W_P$, then $q_i^P(y) > 0$ for all $i = 1, \ldots, k$.”

(9) The first line of the proof of Proposition 12.2 should read: “By (5.1) and Lemma 12.1 we have”.

Acknowledgements

I am very grateful to Daewoong Cheong for pointing out the error in the original proof of Theorem 4.2.

References

