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QUANTUM GENERALIZATION OF THE HORN CONJECTURE

PRAKASH BELKALE

1. Introduction

Consider the following additive eigenvalue problem for the special unitary group
SU(n):

• Characterize the possible eigenvalues (α, β, γ) of traceless Hermitian n× n
matrices A, B and C which satisfy A + B + C = 0.

(Recall that the Lie algebra of the special unitary group SU(n) is isomorphic to the
real vector space of traceless Hermitian matrices as representations of SU(n) and
hence the terminology “additive eigenvalue problem” for SU(n).)

In 1962, Horn [17] gave a conjectural solution to a problem equivalent to the
above additive eigenvalue problem for SU(n), by a recursively determined system
of inequalities.

In [19], Klyachko gave a solution to the additive eigenvalue problem for SU(n)
in terms of a certain system of inequalities. To write down this system, we need
to know which structure constants in the cohomology of Gr(r, n) (written in the
Schubert basis) 0 < r < n are non-zero, where Gr(r, n) is the Grassmannian of
r-dimensional vector subspaces of Cn.

By the work of Klyachko and the saturation theorem of Knutson and Tao [20],
the problem of determining whether a given structure constant in the cohomology
of a Grassmannian Gr(r, n) (again in the Schubert basis) is non-zero is related
to the additive eigenvalue problem for the smaller group SU(r). Horn’s original
conjecture followed from these works of Klyachko and of Knutson and Tao. We
refer the reader to Fulton’s survey article [12] for details.

Our aim in this paper is to formulate and prove an analogue of Horn’s conjecture
for the following multiplicative eigenvalue problem for the group SU(n). Let s ≥ 2
be a positive integer.

• Characterize the possible eigenvalues (α1, α2, . . . , αs) of matrices A(1), A(2),
. . . , A(s) ∈ SU(n) which satisfy A(1) A(2) · · ·A(s) = 1.

1.1. Gromov-Witten numbers and eigenvalue problems. Denote the set of
cardinality r subsets I = {i1 < · · · < ir} of [n] = {1, 2, . . . , n} by

(
[n]
r

)
. To each

I ∈
(
[n]
r

)
we associate a weakly decreasing sequence of non-negative integers

(1.1) I �→ λ(I) = (λ1 ≥ λ2 ≥ · · · ≥ λr) ∈ Zr
≥0,

where λa = n − r + a − ia for a ∈ [r].
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Let
E• : {0} = E0 � E1 � · · · � En = W

be a complete flag in an n-dimensional vector space W . For I ∈
(
[n]
r

)
, the Schubert

variety ΩI(E•) is defined to be the closed subvariety of the Grassmannian Gr(r, W )
of r-dimensional vector subspaces of W given by

ΩI(E•) = {V ∈ Gr(r, W ) | dim(V ∩ Eia
) ≥ a for a ∈ [r]}.

The codimension of ΩI(E•) in Gr(r, W ) is codim(ωI) =
∑r

a=1(n − r + a − ia).
The cohomology classes ωI = [ΩI(E•)] form a basis for the integral cohomology
H∗(Gr(r, W ), Z) of Gr(r, W ).

Fix a set of points S = {p1, . . . , ps} on P1. Suppose that we are given I1, . . . , Is ∈(
[n]
r

)
and a non-negative integer d. Let E1

• , . . . , Es
• be generic flags on W . The

Gromov-Witten number 〈ωI1 , . . . , ωIs〉d is defined to be the number of maps f :
P1 → Gr(r, W ) of degree d such that f(pj) ∈ ΩIj (Ej

•) for j = 1, . . . , s. If there is
an infinite number of such maps, 〈ωI1 , . . . , ωIs〉d is defined to be zero.

Conjugacy classes in the special unitary group SU(n) are in one to one corre-
spondence with points in the (n − 1)-simplex

∆(n) = {α = (α1, . . . , αn) | α1 ≥ · · · ≥ αn ≥ α1 − 1,
n∑

t=1

αt = 0} ⊆ Rn

where, to (α1, . . . , αn), we associate the conjugacy class of the diagonal matrix with
entries exp(2π

√
−1αt) for t = 1, . . . , n.

The following generalization of Klyachko’s solution of the additive eigenvalue
problem [19] was proven independently by Agnihotri and Woodward [2] and the
author [4] (also see [8]). It says that the multiplicative eigenvalue problem for SU(n)
is controlled by the quantum Schubert calculus of the Grassmannians Gr(r, n).

Theorem 1.1. Let α1, . . . , αs be conjugacy classes in SU(n) with αj = (αj
1, . . . , α

j
n)

for j = 1, . . . , s. The following are equivalent:

(1) There exist A(1), . . . , A(s) ∈ SU(n) with A(j) in the conjugacy class αj such
that A(1) A(2) · · ·A(s) = 1.

(2) For any integers r, d with 0 < r < n, d ≥ 0, and I1, . . . , Is ∈
(
[n]
r

)
, such

that 〈ωI1 , . . . , ωIs〉d 
= 0, the following inequality holds:

(1.2)
s∑

j=1

∑
t∈Ij

αj
t ≤ d.

1.2. The multiplicative Horn problem.

Definition 1.2. For I ∈
(
[n]
r

)
where 0 < r < n, with associated sequence λ(I) =

(λ1 ≥ · · · ≥ λr), define a conjugacy class β(I) = (β1, . . . , βr) for SU(r) as follows:

β(I) =
1

n − r
(λ1, . . . , λr) −

|λ(I)|
r(n − r)

(1, . . . , 1)

where |λ(I)| =
∑r

a=1 λa. More explicitly, for a ∈ [r],

βa =
1

n − r

(
λa − 1

r
|λ(I)|

)
.
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The center of SU(r) acts on the conjugacy classes of elements in SU(r). Set
ζr = exp( 2π

√
−1

r ) ∈ C. Given a conjugacy class α for SU(r), we can multiply α
by ζr and obtain a new conjugacy class ζrα. Explicitly, if α = (α1, . . . , αr), then
ζrα = (α2 + 1

r , . . . , αr + 1
r , α1 + 1

r − 1). The main theorem of this paper is the
following:

Theorem 1.3. Let I1, . . . , Is ∈
(
[n]
r

)
, where 0 < r < n, and let d be a non-negative

integer. Assume that
s∑

j=1

codim(ωIj ) = r(n − r) + dn.

The following are equivalent:
(1) 〈ωI1 , . . . , ωIs〉d 
= 0.
(2) There exist A(1), . . . , A(s) ∈ SU(r) such that

• A(1) A(2) · · ·A(s) = 1.
• A(1) is in the conjugacy class ζd

r β(I1) and for j ≥ 2, A(j) is in the
conjugacy class β(Ij).

(3) There exists an SU(n)-local system L on P1 −S such that the local mon-
odromy of L at p1 is ζd

r β(I1) and the monodromy at pj for j ≥ 2 is β(Ij).

The equivalence of (2) and (3) follows immediately from the description of the
fundamental group of P1 −S as a free group on generators γ1, γ2, . . . , γs modulo the
relation γ1γ2 · · · γs = 1.

The implication (1) ⇒ (3) is a remarkable way of producing unitary local systems
on P1 −S from non-vanishing Gromov-Witten numbers. This implication can also
be obtained from the work of Witten [33] and Agnihotri [1] as was pointed out to
us by Woodward.

In Theorem 1.5, we will give an explicit system of inequalities which is equivalent
to the criteria in Theorem 1.3.

1.2.1. Consequences of Theorem 1.3 for eigenvalue problems. Define subsets Γ(n, s)
⊆ ∆(n)s for positive integers n (and the fixed positive integer s), recursively, as
follows:

(1) Γ(1, s) = ∆(1)s.
(2) Let n be a positive integer. Assume Γ(r, s) has been defined whenever

0 < r < n. Define Γ(n, s) as follows: (α1, . . . , αs) ∈ Γ(n, s) where αj =
(αj

1, . . . , α
j
n) if and only if for any integers r and d with 0 < r < n, d ≥ 0,

and I1, . . . , Is ∈
(
[n]
r

)
, such that

•
∑s

j=1

∑r
a=1(n − r + a − ija) = r(n − r) + dn,

• (ζd
r β(I1), β(I2), . . . , β(Is)) ∈ Γ(r, s),

the following inequality holds:
s∑

j=1

∑
t∈Ij

αj
t ≤ d.

The following corollary is immediate from Theorem 1.3 and Theorem 1.1 and is the
multiplicative (“quantum”) generalization of Horn’s conjecture:

Corollary 1.4. Let α1, . . . , αs ∈ ∆(n) be conjugacy classes in SU(n). Then there
exist A(1), . . . , A(s) ∈ SU(n) with A(j) in the conjugacy class αj and A(1)A(2) · · ·A(s)

= 1 if and only if (α1, . . . , αs) ∈ Γ(n, s).
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1.3. Quantum product of Schubert classes. In this section we will state results
on the small quantum cohomology of the Grassmannian Gr(r, n), where 0 < r < n.
Recall that the small quantum cohomology of Gr(r, n), denoted by QH∗(Gr(r, n)),
is an associative ring whose underlying abelian group is H∗(Gr(r, n), Z)⊗Z[q] and
the Z[q]-linear product structure is given by

ωI � ωJ =
∑

d

∑
K

〈ωI , ωJ , ωK〉d qdωK′

where the first sum is over all non-negative integers d and the second sum is over
all K ∈

(
[n]
r

)
(ωK′ is the dual of ωK ; see Section 2.1).

The classes qdωI form an additive basis for the quantum cohomology ring
QH∗(Gr(r, n)) where d varies over all non-negative integers and I varies over all
elements of

(
[n]
r

)
. Given any element τ ∈ QH∗(Gr(r, n)), we say that qd appears in

τ if the coefficient of qdωI in τ is non-zero for some I.
There is a natural grading on quantum cohomology: The degree of q is n and

non-zero elements in H2k(Gr(r, n)) are homogeneous of degree k. We refer the
reader to [22], [10] for the algebro-geometric foundations of quantum cohomology.

Let I1, . . . , Is ∈
(
[n]
r

)
, and let d be a non-negative integer. We will give a criterion

to determine if qc appears in ωI1 � · · · � ωIs for some c ≤ d. The case of two factors
for an arbitrary G/P was considered by Fulton and Woodward in [11]. Recall that
(by degree considerations), if

∑s
j=1 codim(ωIj ) > dn + r(n− r) and c ≤ d, then qc

does not appear in ωI1 � · · · � ωIs .

Theorem 1.5. Let I1, . . . , Is ∈
(
[n]
r

)
, and let d be a non-negative integer such that

(1.3)
s∑

j=1

codim(ωIj ) ≤ dn + r(n − r).

Write d = qr + b with 0 ≤ b < r and (q, b) ∈ Z2. Let

L = {x ∈ [n] | ∃ y ∈ I1, x ≡ y − i1b (mod n)}
(where i1b = 0 if b = 0). Let (λ̃1, . . . , λ̃r) = λ(L) and (λj

1, . . . , λ
j
r) = λ(Ij) for

j = 2, . . . , s. The following are equivalent:
(a) For some c ≤ d, qc appears in ωI1 � · · · � ωIs .
(b) For any integers d′ and r′ with 0 < r′ < r, d′ ≥ 0, and K1, . . . , Ks ∈

(
[r]
r′

)
such that 〈ωK1 , . . . , ωKs〉d′ = 1, the following inequality holds:∑

a∈K1

λ̃a +
s∑

j=2

∑
a∈Kj

λj
a ≤ d′(n − r) + r′(qn + i1b) + r′(n − r).

If equality holds in inequality (1.3), then (a) and (b) are equivalent to
(c) 〈ωI1 , . . . , ωIs〉d 
= 0.

Theorem 1.5 gives some information on the smallest power of q that appears
in a quantum product ωI1 � · · · � ωIs . We have not been able to turn this into a
combinatorial characterization of the smallest power, as Fulton and Woodward did
([11], Proposition 9.1(2)) in the case s = 2. It should be noted that Theorem 1.3
gives no information on the other powers of q that appear in the same product.
In the case s = 2, Yong [34] has found an upper bound for the highest power of q
appearing in ωI � ωJ , and Postnikov [28] has found exactly which c have qc appear
in ωI � ωJ . Analogous results for s > 2 are not known.
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1.4. Transversality. Fix an algebraically closed field κ of arbitrary characteristic.
For integers r and n with 0 < r < n, let Gr(r, n) be the Grassmannian of r-
dimensional subspaces of κn and let Md

r,n be the space of maps P1 → Gr(r, n) of
degree d ≥ 0 over κ. It is known that Md

r,n is a smooth quasi-projective variety of
dimension r(n − r) + dn (see e.g. [10]). Let S = {p1, . . . , ps} ⊂ P1(κ). There is a
natural morphism

π : Md
r,n →

s∏
j=1

Gr(r, n), π(f) = (f(p1), . . . , f(ps)).

Let I1, . . . , Is ∈
(
[n]
r

)
and assume that

s∑
j=1

codim(ωIj ) = r(n − r) + dn.

Theorem 1.6. For generic flags Ej
• on κn, the scheme π−1(

∏s
j=1 ΩIj (Ej

•)) is a
finite reduced scheme (possibly empty).

If κ is a field of characteristic 0, then the theorem follows from Kleiman’s
transversality theorem [18]. If κ is of positive characteristic, then Kleiman’s re-
sults give only the finiteness of π−1(

∏s
j=1 ΩIj (Ej

•)).
The case where are all Ij are the same and correspond to divisors (that is,

Ij = {n − r, n − r + 2, n − r + 3, . . . , n}) is due to Sottile [31]. The classical
part (that is, d = 0) of Theorem 1.6 was proven independently by the author [6]
and Vakil [32]. The proof of Theorem 1.6 is extracted from the geometric ideas
underlying the proof of Theorem 1.3 following a suggestion of Sottile.

The interesting problem of finding the maximum possible number of real or p-
adic solutions to a “quantum Schubert enumerative problem” remains open (but
see [30], [32]).

1.5. Saturation for fusion structure coefficients. In [6], the author gave a
geometric proof of Horn’s conjecture and using the classical relation between the
cohomology of the Grassmannians Gr(r, n) and the invariant theory of SU(r) (or
equivalently SL(r)) gave a new proof of the saturation theorem of Knutson and
Tao [20].

The fusion ring, also called the Verlinde algebra in the physics literature, of
SU(r) (at a certain level) is the quantum analogue of the representation ring of
SU(r), and the (small) quantum cohomology of Gr(r, n) is of course the quantum
analogue of the usual cohomology of Gr(r, n). A theorem of Witten [33] relates
the (small) quantum cohomology of Grassmannians to the fusion rings of unitary
groups. So it is natural to expect that a quantum saturation theorem would follow
from our analogue of Horn’s conjecture. Before stating our theorem, we recall some
definitions related to the fusion ring of SU(r) (see e.g. [3] for the basic theory).

Irreducible polynomial representations of the unitary group U(r) are parame-
terized by weakly decreasing sequences of non-negative integers λ = (λ1 ≥ λ2 ≥
· · · ≥ λr). These restrict to irreducible representations λ̄ of SU(r). Sequences λ
and µ restrict to give the same irreducible representation of SU(r) if and only if the
difference λa − µa = c for some constant c and all a ∈ [r]. The congruence class
|µ̄| =

∑r
a=1 µa (mod r) ∈ Z/rZ is therefore well defined.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



370 PRAKASH BELKALE

Let k be a positive integer. Following the notation in [3], consider the set Pk of
irreducible representations µ̄ of SU(r) such that µ1−µr ≤ k. Given µ̄1, . . . , µ̄s ∈ Pk,
let N

(k)
0 (µ̄1, . . . , µ̄s) denote the dimension of the corresponding vector space of

conformal blocks for genus 0 at level k. This number is also the dimension of
the space of sections of a certain line bundle on a moduli stack of parabolic bundles
on P1 [27].

Remark 1.7. If k ≥
∑s

j=1(µ
j
1−µj

r), then N
(k)
0 (µ̄1, . . . , µ̄s) coincides with the dimen-

sion of the space of SU(r) invariants in the tensor product of the representations
µ̄1, . . . , µ̄s.

The fusion ring of SU(r) at level k, denoted by R(SU(r))k, is an associative ring
whose underlying abelian group is freely generated by representations ν̄ ∈ Pk, and
the product is given by

(1.4) µ̄1 · µ̄2 · · · µ̄s =
∑

ν̄

N
(k)
0 (µ̄1, . . . , µ̄s, ν̄)ν̄∗

where ν̄ varies over all elements of Pk and ν̄∗ is the dual of ν̄.
Let µ̄1, . . . , µ̄s ∈ Pk be such that

∑s
j=1 |µ̄j | = 0 ∈ Z/rZ, and let M be a non-

negative integer. Then

Theorem 1.8. N
(k)
0 (µ̄1, . . . , µ̄s) 
= 0 if and only if N

(Mk)
0 (Mµ̄1, . . . , Mµ̄s) 
= 0.

(Note that R(SU(r))k can be realized as a quotient of the representation ring of
SU(r) and hence if

∑s
j=1 |µ̄j | 
= 0 ∈ Z/rZ, then N

(k)
0 (µ̄1, . . . , µ̄s) = 0.)

Theorem 1.8 is a generalization of the Knutson-Tao saturation theorem: Given
irreducible representations µ̄1, . . . , µ̄s of SU(r), such that

∑s
j=1 |µ̄j | = 0 ∈ Z/rZ, fix

an integer k such that k ≥
∑s

j=1(µ
j
1−µj

r). Clearly, µ̄1, . . . , µ̄s ∈ Pk. By Remark 1.7,

N
(k)
0 (µ̄1, . . . , µ̄s) (resp. N

(Mk)
0 (Mµ̄1, . . . , Mµ̄s)) coincides with the dimension of the

space of SU(r) invariants in the tensor product of the representations µ̄1, . . . , µ̄s

(resp. Mµ̄1, . . . , Mµ̄s). Hence, we recover the saturation theorem, which asserts
that one of these spaces of invariants is non-zero if and only if the other is non-zero.

1.6. An overview of the methods. It is standard that we can view 〈ωI1, . . . ,ωIs〉d
from Section 1.1 also as the number of subbundles of degree −d and rank r (if finite
and zero otherwise) V of the trivial vector bundle W = On

P1 on P1 of rank n, such
that Vpj

∈ ΩIj (Ej
•) for j = 1, . . . , s. To get an inductive grip on this situation, we

would like to replace W by V . But V may not be trivial as a vector bundle. However,
it can be shown that V is “evenly split” (see Section 2.3 and Lemma 4.5). This
motivates us to carry out a generalization of Gromov-Witten numbers (Section 2.4).

With this inductive framework in place, the strategy for the proofs is very similar
to those in [6] (where many of the arguments in this paper appear in a simpler
situation): The tangent space technique is modified to apply in a more general
situation. Standard properties of quot schemes are used to do the tangent space
calculations. Some general position techniques from [6] are also used.

There are some additional difficulties in the quantum situation arising from the
nature of morphisms between vector bundles on P1 (e.g. the image of a morphism
of vector bundles may not be a subbundle). We use techniques inspired by the
theory of parabolic bundles to overcome these difficulties.
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1.7. Conventions. All schemes in this paper are assumed to be of finite type over
an algebraically closed base field κ of arbitrary characteristic.

(1) Fix a finite collection of points S = {p1, . . . , ps} on P1.
(2) The (small) category of sets will be denoted by (Sets).
(3) A morphism V → W of locally free sheaves on a scheme X is said to have

rank r if the cokernel is a locally free sheaf of rank dim(W) − r.
(4) For a weakly decreasing sequence of non-negative integers λ = (λ1 ≥ λ2 ≥

· · · ≥ λr), let |λ| =
∑r

a=1 λa.

2. Formulation of the main result

2.1. Schubert cells. Let

E• : {0} = E0 � E1 � · · · � En = W

be a complete flag in an n-dimensional vector space W . For I ∈
(
[n]
r

)
, define the

Schubert cell Ωo
I(E•) ⊆ Gr(r, W ) by

Ωo
I(E•) = {V ∈ Gr(r, W ) | dim(V ∩ Eu) = a for ia ≤ u < ia+1, a = 0, . . . , r}

where i0 is defined to be 0 and ir+1 = n. It is easy to see that ΩI(E•) (defined in
the introduction) is the closure of Ωo

I(E•).
The dual of the cohomology class ωI of ΩI(E•) under the intersection pairing is

ωI′ where I ′ = {i ∈ [n] | n+1−i ∈ I}. This means that if codim(ωI)+codim(ωJ) =
r(n− r), the intersection number ωI ·ωJ ∈ H2r(n−r)(Gr(r, W ), Z) = Z is 1 if J = I ′

and 0 otherwise.

2.2. Complete flags. For a vector bundle W on P1, define

FlS(W) =
∏
p∈S

Fl(Wp).

If E ∈ FlS(W), we will assume that it is written in the form E = (Ep
• | p ∈ S). More

generally if T is a scheme and W is a vector bundle on P1 ×T , let FlS(W) be the
scheme over T , consisting of pairs (t, E) where t ∈ T and E ∈ FlS(Wt).

For a vector bundle W on P1, a subbundle V ⊆ W and E = (Ep
• | p ∈ S) ∈

FlS(W) we have associated induced complete flags on the fibres at p ∈ S of V
and Q = W/V . We denote these by E(V) = (Ep

• (V) | p ∈ S) ∈ FlS(V) and
E(Q) = (Ep

• (Q) | p ∈ S) ∈ FlS(Q).

2.3. Evenly split vector bundles on P1. A vector bundle W on P1 is said to be
evenly split if W =

⊕n
i=1 OP1(ai) with |ai − aj | ≤ 1 for 0 < i < j ≤ n.

Let D and n be integers with n > 0. It is easy to show that up to isomorphism,
there is a unique evenly split vector bundle of degree −D and rank n on P1. We
denote this vector bundle by ZD,n.

Let W be a vector bundle on P1. Let d and r be integers with r ≥ 0 (and d
possibly negative). Define Gr(d, r,W) to be the moduli space of subbundles of W
of degree −d and rank r. This is an open subset of the quot scheme of quotients of
W of degree d − D and rank n − r.

Definition 2.1. For non-negative integers r, m and for b, d ∈ Z let

χ(d, r, b, m) = χ(P1,Hom(Zd,r,Zb,m)) = rm + dm − br.

Proposition 2.2. (1) Gr(d, r,ZD,n) is smooth and connected (possibly empty) of
dimension χ(d, r, D − d, n − r).
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(2) The subset of Gr(d, r,ZD,n) consisting of evenly split subbundles V ⊆ ZD,n

such that ZD,n/V is also evenly split is open and dense in Gr(d, r,ZD,n).

The proof of Proposition 2.2 (which is well known) will be given in Section 12.1.

2.4. Schubert states and generalized Gromov-Witten numbers.

Definition 2.3. A Schubert state is a 5-tuple I = (d, r, D, n, I) where d, D, r and n

are integers, 0 ≤ r ≤ n, and I assigns to each p ∈ S an element Ip ∈
(
[n]
r

)
(we allow

the possibilities r = 0 and r = n). We will use the notation Ip = {ip1 < · · · < ipr}
for p ∈ S.

Let W = ZD,n and let I = (d, r, D, n, I) be a Schubert state. Fix a generic point
E ∈ FlS(W). For p ∈ S, let πp : Gr(d, r,W) → Gr(r,Wp) be the natural morphism
(the fibre of the subbundle at p). For p ∈ S, the group GL(Wp) acts transitively on
Gr(r,Wp). Hence by Kleiman’s transversality theorem [18], the dimension of each
irreducible component of the intersection

(2.1)
⋂
p∈S

π−1
p

(
Ωo

Ip(Ep
• )

)
⊆ Gr(d, r,W)

equals

(2.2) dim I = dim Gr(d, r,ZD,n) −
∑
p∈S

codim(ωIp).

Definition 2.4. (1) Define 〈I〉 to be the number of points in the intersection (2.1)
(if finite and 0 otherwise).

(2) We will say that I is non-null (resp. null) if (2.1) is a possibly infinite
non-empty intersection (resp. empty).

Remark 2.5. If D = 0, then 〈I〉 = 〈ωIp1 , . . . , ωIps 〉d.

If the base field is of characteristic 0 and dim I = 0, it follows from Kleiman’s
transversality theorem that the intersection (2.1) is a reduced zero-dimensional
scheme. In Proposition 10.1, we will show that this property holds for any alge-
braically closed field.

2.5. Shift operations. The following two results on shift operations are proved
in Section 11.

Lemma 2.6. Consider a Schubert state I = (d, r, D, n, I). Set J = (d + r, r, D +
n, n, I). Then

(1) dim I = dimJ ,
(2) I is non-null ⇔ J is non-null,
(3) 〈I〉 = 〈J 〉.

Consider the operator Sh acting on
(
[n]
r

)
which sends I = {i1 < · · · < ir} to

(1) {i1 − 1 < i2 − 1 < · · · < ir − 1} if i1 > 1,
(2) {i2 − 1 < · · · < ir − 1 < n} if i1 = 1.

Informally, Sh(I) = I − 1 with 0’s replaced by n.
Let I = (d, r, D, n, I) be a Schubert state and let p ∈ S. Define a new shifted

Schubert state Sh(p)(I) = (d′, r, D − 1, n, J) where d′ and J are given as follows:
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Jq = Iq if q ∈ S − {p}, Jp = Sh(Ip) and

(a) if ip1 > 1, d′ = d,
(b) if ip1 = 1, d′ = d − 1.

The following proposition is related to the “action” of n-th roots of unity on the
quantum cohomology of the Grassmannian Gr(r, n) [2]. The geometry of this action
of the center of SL(n) appeared in [5] (where it was used to give a new geometric
proof of Bertram’s Pieri and Giambelli rules [7] for the quantum cohomology of
Grassmannians).

Proposition 2.7. With notation as above,

(1) dim I = dim Sh(p)I,
(2) I is non-null ⇔ Sh(p)I is non-null,
(3) 〈I〉 = 〈Sh(p)(I)〉.

2.6. The main result.

Theorem 2.8. Let I = (d, r, D, n, I) be a Schubert state such that 0 < r < n and

(2.3) dim I = dim Gr(d, r,ZD,n) −
∑
p∈S

codim(ωIp) ≥ 0.

The following are equivalent:

(A) I is non-null.
(B) For every non-null Schubert state of the form K = (d′, r′, d, r, K) with 0 <

r′ < r, the following inequality holds:

(†IK) −χ(d′, r′, D − d, n − r) +
∑
p∈S

∑
a∈Kp

(n − r + a − ipa) ≤ 0.

(C) For every Schubert state of the form K = (d′, r′, d, r, K) with 0 < r′ < r
and 〈K〉 
= 0, inequality (†IK) holds.

(D) For every Schubert state of the form K = (d′, r′, d, r, K) with 0 < r′ < r
and 〈K〉 = 1, inequality (†IK) holds.

Remark 2.9. For p ∈ S, let (λp
1 ≥ · · · ≥ λp

r) = λ(Ip) (see equation (1.1)). Then
inequality (†IK) takes the following form:∑

p∈S

∑
a∈Kp

λp
a ≤ d′(n − r) + (d − D)r′ + r′(n − r).

Remark 2.10. The cases r′ = 0 or r′ = r are left out in the conditions (B), (C) and
(D) of Theorem 2.8. The only non-null Schubert state K with r′ = r is (d, r, d, r, K)
where Kp = [r] for every p ∈ S. In this case, inequality (†IK) is the same as the
inequality (2.3). The only non-null Schubert state K with r′ = 0 is (0, 0, d, r, K)
where Kp = ∅ for every p ∈ S. It is easy to see that the corresponding inequality
(†IK) is always (trivially) satisfied.

The implications (B) ⇒ (C) ⇒ (D) are trivial. The implications (A) ⇒ (B)
and (C) ⇒ (A) will be shown in Sections 4 and 7.1, respectively. In Section 8.4 we
will show that (D) implies (B), using Proposition 10.1 if the characteristic of the
base field is non-zero.
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3. Applications of Theorem 2.8

3.1. Proof of Theorem 1.3. Theorem 1.3 is a special case (when D = 0) of

Proposition 3.1. Let I = (d, r, D, n, I) be a Schubert state such that dim I = 0
and 0 < r < n. Then the following are equivalent:

(1) 〈I〉 
= 0.
(2) There exist A(1), . . . , A(s) ∈ SU(r) such that

• A(1) A(2) · · ·A(s) = 1.
• A(1) is in the conjugacy class ζd

r β(I1) and for j ≥ 2, A(j) is in the
conjugacy class β(Ij).

Proof. By Lemma 2.6, 〈I〉 
= 0 if and only if 〈(d+r, r, D+n, n, I)〉 
= 0, and clearly,
ζd
r = ζd+r

r . We can therefore assume that 0 ≤ d < r without loss of generality.
Let Ip1 = {i1 < · · · < ir}; we consider J = Sh(p1)idI = (0, r, D − id, n, J) (see

Section 2.5). From Proposition 2.7, 〈I〉 
= 0 if and only if 〈J 〉 
= 0.
It is easy to see that for I ∈

(
[n]
r

)
,

• β(Sh(I)) = β(I) if i1 
= 1,
• β(Sh(I)) = ζrβ(I) if i1 = 1.

Hence, β(Jp1) = ζd
r β(Ip1) and β(Jpj ) = β(Ipj ) for j = 2, . . . , s. Therefore if the

proposition holds for J , then it also holds for I. Hence it suffices to prove the
proposition assuming d = 0.

Assume d = 0. From the equivalence of (A) and (C) in Theorem 2.8, I is non-null
if and only if a system of inequalities (†IK) indexed by Schubert states of the form
K = (d′, r′, 0, r, K) with 0 < r′ < r such that 〈K〉 
= 0 holds. Similarly, according to
Theorem 1.1, (2) holds if and only if a system of inequalities indexed by the same
set of K holds (see Remark 2.5).

Set (λj
1, . . . , λ

j
r) = λ(Ipj ) for j = 1, . . . , s. Then the inequality (†IK) (see Re-

mark 2.9) is

(3.1)
s∑

j=1

∑
a∈Kpj

λj
a ≤ d′(n − r) − Dr′ + r′(n − r).

Using the hypothesis dim I = 0, we have

(3.2)
s∑

j=1

r∑
a=1

λj
a = r(n − r) − Dr.

Subtract r′ times equality (3.2) from r times inequality (3.1) to obtain

(3.3)
s∑

j=1

∑
a∈Kpj

(rλj
a −

r∑
b=1

λj
b) ≤ d′r(n − r).

Let β(Ipj ) = (αj
1, . . . , α

j
r) for j = 1, . . . , s. Dividing inequality (3.3) by r(n− r), we

see that inequality (3.1) is equivalent to the following inequality (see Definition 1.2):
s∑

j=1

∑
a∈Kpj

αj
a ≤ d′.

The above inequality is the same as the one corresponding to Theorem 1.1 for K
and the proposition is proved. �
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3.2. Proof of Theorem 1.5.

Proposition 3.2. Let I = (d, r, 0, n, I) be a Schubert state where 0 < r < n. The
following are equivalent:

(1) I is non-null.
(2) For some c ≤ d, qc appears in the product ωIp1 � ωIp2 � · · · � ωIps .

Proof. Assume (1). Let W = O
⊕

n
P1 , and let E ∈ FlS(W) be a generic point. For

p ∈ S, let πp : Gr(d, r,W) → Gr(r,Wp) be the natural morphism. Let

Ω =
⋂
p∈S

π−1
p (Ωo

Ip(Ep
• )) ⊆ Gr(d, r,W).

Since I is non-null, Ω is a non-empty proper intersection of dimension dimI. Pick
a large collection of points Q = {q1, . . . , qm} such that the natural morphism

Γ : Gr(d, r,W) →
∏
q∈Q

Gr(r,Wq)

is quasi-finite (see e.g. [11], Lemma 7.4).
Let G = Γ(Ω). Since E is generic, each irreducible component of G is of dimension

dim I. Clearly there exist ωLq ∈ H∗(Gr(r,Wq)) for q ∈ Q such that [G]·(
∏

q∈Q ωLq )
is a non-zero multiple of the class of a point in H2mr(n−r)(

∏
q∈Q Gr(r,Wq)).

Choose a generic point

(Eq
• | q ∈ Q) ∈

∏
q∈Q

Fl(Wq).

It is clear that G meets
∏

q∈Q ΩLq (Eq
• ) in a non-empty finite set. Now, Γ(Ω) ∩

(
∏

q∈Q Ωo
Lq(Eq

• )) is dense in G∩
(∏

q∈Q ΩLq(Eq
• )

)
(see e.g. [6], Proposition 1.1) and

is therefore a non-empty finite set. Hence,

〈ωIp1 , . . . , ωIps , ωLq1 , . . . , ωLqm 〉d 
= 0.

Using the associativity of the quantum product, we conclude that (2) holds.
Suppose (2) holds. According to Lemma 3.3, there exist L1, . . . , Lm ∈

(
[n]
r

)
(for

some m) such that

(3.4) 〈ωIp1 , . . . , ωIps , ωL1 , . . . , ωLm〉d 
= 0.

Add m new points {q1, . . . , qm} ∈ P1 −S. Let E1
• , . . . , Es+m

• be generic flags
on Cn. From the non-vanishing of the Gromov-Witten number (3.4), there is a
non-empty finite set of maps f : P1 → Gr(r, n) such that f(pj) ∈ Ωo

Ipj (Ej
•) for

j = 1, . . . , s and f(qi) ∈ Ωo
Li(Es+i

• ) for i = 1, . . . , m. Let E ∈ FlS(W) be the point
whose pj-th coordinate is Ej

• (using the given isomorphism Wpj

∼→ Cn). The non-
vanishing of the Gromov-Witten number (3.4) implies that

⋂
p∈S π−1

p (Ωo
Ip(Ep

• )) is
non-empty. Therefore I is non-null. �
Lemma 3.3. For every cohomology class ωI of a Schubert variety in Gr(r, n) and
every integer e > 0, there exist L1, . . . , Lm ∈

(
[n]
r

)
such that qe appears in the

quantum product ωI � ωL1 � · · · � ωLm .

Proof. It suffices by induction to consider only the case e = 1. Multiply by the dual
ωI′ of ωI to reduce to the case of I = [r] (so that ωI is the class of a point). But this
case follows from Bertram’s Pieri formula [7], by multiplying ωI with the class of a
codimension 1 Schubert variety: ω[r] � ω{n−r,n−r+2,n−r+3,...,n} = q ω{2,3,...,r,n}. �
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3.2.1. Proof of Theorem 1.5. Let I = (d, r, 0, n, I) where Ipj = Ij for j = 1, . . . , s.
By Proposition 3.2, the condition in (a) is that I is non-null. Let L = Sh(p1)qn+i1bI
= (0, r,−(qn + i1b), n, L) for some L. By Lemma 2.6 and Proposition 2.7, dim I =
dimL and I is non-null if and only if L is non-null. Condition (b) is just the system
of inequalities obtained from Theorem 2.8 for L to be non-null. If equality holds
in inequality (1.3), then any term of the form qcωJ in (a) is necessarily a non-zero
multiple of qdω[r]. This shows the equivalence of (c) with the other conditions.

3.3. Saturation in the fusion ring. We will first formulate the explicit relation
between structure coefficients in the fusion ring of SU(r) at level k and Gromov-
Witten numbers of Grassmannians Gr(r, n) where n = r + k.

Proposition 3.4. Let I = (d, r, D, n, I) be a Schubert state with dim I = 0 and
d = 0. Set µj = λ(Ipj ) for j = 1, . . . , s. Then

(3.5) 〈I〉 = N
(k)
0 (µ̄1, . . . , µ̄s).

In Section 3.5, we will deduce Proposition 3.4 from a theorem of Witten [33].

3.3.1. Fusion structure coefficients and the multiplicative eigenvalue problem. As
in Section 1.5, let Pk be the set of irreducible representations µ̄ of SU(r) such that
µ1 −µr ≤ k. For a representation µ̄ ∈ Pk, define a conjugacy class α(µ̄, k) of SU(r)
by the following formula:

α(µ̄, k) =
1
k

(
µ − |µ|

r
(1, . . . , 1)

)
.

Proposition 3.5. Let µ̄1, . . . , µ̄s ∈ Pk be such that
∑s

j=1 |µ̄j | = 0 ∈ Z/rZ. The
following are equivalent:

(1) N
(k)
0 (µ̄1, . . . , µ̄s) 
= 0.

(2) There exist A(1), . . . , A(s) ∈ SU(r) with A(j) in the conjugacy class α(µ̄j , k)
such that A(1) A(2) · · ·A(s) = 1 .

Proof. Let n = r + k. Find I1, . . . , Is ∈
(
[n]
r

)
such that λ̄(Ij) = µ̄j for j = 1, . . . , s.

Since
∑s

j=1 |µ̄j | = 0 ∈ Z/rZ, there exists a possibly negative integer D such that

(3.6)
s∑

j=1

|λ(Ij)| = r(n − r) − Dr.

Let Ipj = Ij for j = 1, . . . , s, and I = (0, r, D, n, I). Using Proposition 2.2 and
equation (3.6),

dim I = dim Gr(0, r,ZD,n) −
s∑

j=1

codimωIj = r(n − r) − Dr −
s∑

j=1

|λ(Ij)| = 0.

By Proposition 3.4, 〈I〉 = N
(k)
0 (µ̄1, . . . , µ̄s). It is easy to see that the conjugacy

class α(µ̄j , k) is the same as β(Ij). We can now conclude the proof by using
Proposition 3.1. �

3.3.2. Proof of Theorem 1.8. It is easy to see by direct inspection that α(Mµ̄, Mk)
= α(µ̄, k) for any positive integer M . Therefore by Proposition 3.5, N

(k)
0 (µ̄1, . . . , µ̄s)


= 0 if and only if N
(Mk)
0 (Mµ̄1, . . . , Mµ̄s) 
= 0. This concludes the proof of Theo-

rem 1.8.
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3.4. Fusion rings and the quantum cohomology of Grassmannians. It is
known classically that there is a ring-theoretic surjection from the polynomial rep-
resentation ring of U(r) to the cohomology H∗(Gr(r, n), Z) of the Grassmannian
Gr(r, n) (see e.g. [6], Section 7). Although the representation theory of U(r) is
closely related to that of SU(r) (“twisted” by the representation theory of U(1)),
only the representation ring of U(r) relates to the cohomology of Grassmannians
in a ring-theoretic framework.

This phenomenon continues in the quantum setting. The fusion rings are the
quantum analogues of representation rings. We have three fusion rings in this
picture (for more details see [33]):

(1) the fusion ring of SU(r) at level k, denoted as in Section 1.5 by R(SU(r))k,
(2) the fusion ring R(U(1))nr of U(1) at level nr which is identified with

Z[x]/(xnr − 1),
(3) the fusion ring R(U(r))k,n of U(r) at SU(r) level k and U(1) level n (=r +

k). Recall ([33], [1]) that R(U(r))k,n is additively generated by weakly
decreasing sequences of non-negative integers: λ = (λ1 ≥ λ2 ≥ · · · ≥ λr) ∈
Zr
≥0 such that λ1 ≤ k.

In analogy with the classical situation, R(U(r))k,n is directly related to quantum
cohomology by the following theorem of Witten [33].

Theorem 3.6. The natural additive map

(3.7) W : QH∗(Gr(r, n))/(q − 1) → R(U(r))k,n

given by W (ωI) = λ(I) is an isomorphism of rings.

The fusion ring R(U(r))k,n is a “twisted” form of R(SU(r))k. We will now
make this relation precise (for more details see [33], page 414, and [15], pages 11,
12). Inside R(SU(r))k ⊗C R(U(1))nr consider the abelian subgroup R̃ spanned by
λ̄ ⊗ xa such that |λ̄| ≡ a (mod r). It is immediate that R̃ is a unital subring of
R(SU(r))k ⊗Z R(U(1))nr.

Consider the following operator acting on R̃:

(3.8) T (λ̄ ⊗ xa) = η̄ ⊗ xn+a

where η̄ is related to λ̄ by the cyclic shift η = (k + λr ≥ λ1 ≥ λ2 ≥ · · · ≥ λr−1)
and a ≡ |λ̄| (mod r). It is easy to check that T (u) = u · ((k, 0, . . . , 0) ⊗ xn). The
Z-submodule of R̃ generated by elements T (u) − u for u ∈ R̃ is an ideal I of R̃.

Lemma 3.7. (1) Each orbit {T b(µ̄ ⊗ xa)r
b=1} where a ≡ |µ̄| (mod r), contains

a unique element of the form λ̄ ⊗ x|λ| ∈ R̃ where the sequence λ satisfies
λ1 ≤ k and λr ≥ 0.

(2) If µ̄ = 0, then the T orbit of µ̄⊗1 does not contain any element of the form
ν̄ ⊗ 1 with ν̄ 
= 0.

Proof. Let K ∈
(
[n]
r

)
be such that λ̄(K) = µ̄ and set c = a − |λ|. Clearly, µ̄ ⊗ xa =

λ̄(K) ⊗ xc+|λ(K)|. Let J = Sh−1(K) (see Section 2.5). That is, J is obtained by
adding 1 to elements of K and replacing n + 1’s by 1.

It is easy to see that λ̄(J)⊗ xc+|λ(J)|+r equals λ̄(K)⊗ xc+|λ(K)| if n 
∈ K and it
equals T (λ̄(K)⊗xc+|λ(K)|) if n ∈ K. Now by assumption c ≡ 0 (mod r) and hence
there is a unique � ∈ [n] such that c + �r ≡ 0 (mod nr). We repeat this process �
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times. The sought for λ is λ(Sh−�(K)). This proves (1). Assertion (2) follows from
the definition of T . �

The linear map R̃ → R(U(r))k,n sending λ̄⊗x|λ| ∈ R̃ to λ ∈ R(U(r))k,n is a ring
homomorphism with kernel I and induces an isomorphism of rings (see [33], page
416)

R̃/I
∼→ R(U(r))k,n.

Let K = {1, k + 2, k + 3, . . . , k + r = n} ⊂ [n]. Then using equation (3.8) on
λ = (0, 0, . . . , 0) ∈ Zr, we obtain the following equality in R(U(r))k,n (note that
1 ⊗ xr ∈ R̃):

(3.9) W (ωK)(1 ⊗ xr) = 1.

Remark 3.8. For the purposes of this paper, we can take R̃/I to be the definition
of R(U(r))k,n. Since Pieri’s rule holds on both sides of equation (3.7) (using [7] on
the quantum cohomology side and [14] for the fusion ring of SU(r) at level k), we
can then conclude that W is a ring isomorphism.

3.5. Proof of Proposition 3.4. We will first consider the case D ≤ 0. Let K =
{1, k + 2, k + 3, . . . , n}. We claim

(3.10) 〈I〉 = 〈ωI1 , ωI2 , . . . , ωIs , ωK , ωK , . . . , ωK〉−D

with ωK repeated −D times (the right hand side is a usual Gromov-Witten num-
ber). To see this, apply the shift operation from Proposition 2.7 to each of the −D
ωK ’s appearing on the right hand side of equation (3.10) (see Remark 3.9).

According to Theorem 3.6, the right hand side of equation (3.10) equals the
coefficient of W (ω[r]) in the product

(3.11) W (ωK)−D
s∏

j=1

W (ωIj ) ∈ R(U(r))k,n.

Using equation (3.9), we note W (ωK) = 1 ⊗ xnr−r. Also W (ωIj ) = λ̄(Ij) ⊗
xcodim(ωIj ). Then using our assumption that dimI = 0, the U(1) component of the
product in R̃ corresponds to x raised to the number (mod nr)∑

j

codim(Ij) + Dr = r(n − r).

Thus, using Lemma 3.7 (2), the coefficient of W (ω[r]) in W (ωK)−D
∏s

j=1 W (ωIj )
equals the coefficient of the identity representation in the product

∏s
j=1 λ̄(Ij) in

R(SU(r))k, which equals the right hand side of equation (3.5) as desired.
If D > 0, let L = {k, k + 1, . . . , n − 1} ⊆ [n]. It is easy to show, using Proposi-

tion 2.7 that
〈I〉 = 〈ωI1 , ωI2 , . . . , ωIs , ωL, ωL, . . . , ωL〉0

with ωL repeated D times (the right hand side is now a classical cohomology struc-
ture coefficient). It is easy to check that W (ωL) = 1 ⊗ xr and we proceed as
before.

Remark 3.9. Let I = (d, r, D, n, I) be a Schubert state, and suppose q ∈ S and
Iq = {n− r +1, n− r +2, . . . , n}. Set S′ = S−{q} and I ′ = (d, r, D, n, I|S′). Then
〈I′〉 = 〈I〉.
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4. Proof of (A)⇒ (B) in Theorem 2.8

Definition 4.1. Let I = (d, r, D, n, I) be a Schubert state, W a vector bundle on
P1 of degree −D and rank n, and E ∈ FlS(W). For p ∈ S, let πp : Gr(d, r,W) →
Gr(r,Wp) be the natural morphism. Define the scheme-theoretic intersection

Ωo(I,W , E) =
⋂
p∈S

π−1
p (Ωo

Ip(Ep
• )) ⊆ Gr(d, r,W).

Definition 4.2. Let I = (d, r, D, n, I) and K = (d′, r′, d, r, K) be Schubert states.
Define IK = (d′, r′, D, n, L) where Lp = {ipa | a ∈ Kp} for p ∈ S.

Remark 4.3. Suppose V ∈ Ωo(I,W , E). By an easy computation at each p ∈ S
(see [13], Lemma 2 (i)) it follows that

(4.1) Ωo(K,V , E(V)) ⊆ Ωo(IK,W , E)

under the inclusion Gr(d′, r′,V) ⊆ Gr(d′, r′,W).

Lemma 4.4. Each irreducible component of Ωo(I,W , E) is of dimension at least
dim I.

Proof. Each irreducible component of Gr(d, r,W) passing through a point V is
of dimension at least χ(Hom(V ,W/V)) (see e.g. [21], Theorem I.5.17). Now,
Schubert cells in a Grassmannian are smooth and are hence local complete in-
tersections. By Krull’s principal ideal theorem it is now easy to see that each
irreducible component of Ωo(I,W , E) passing through V is of dimension at least
χ(Hom(V ,W/V))−

∑
p∈S codim(ωIp) as desired. �

The proof of the following lemma will be given in Section 4.2.

Lemma 4.5. Let W = ZD,n, and suppose I = (d, r, D, n, I) and K = (d′, r′, d, r, K)
are non-null Schubert states. Then for generic E ∈ FlS(W), there exists an open
dense subset of Ωo(I,W , E) such that for V in this open dense subset,

(i) V and W/V are evenly split vector bundles,
(ii) Ωo(K,V , E(V)) is a non-empty proper intersection.

Suppose I = (d, r, D, n, I) is a non-null Schubert state with 0 < r < n. Let K
be a non-null Schubert state of the form (d′, r′, d, r, K) with 0 < r′ < r. We will
now show that inequality (†IK) from Theorem 2.8 holds:

Let E ∈ FlS(W) be a generic point. Choose V ∈ Ωo(I,W , E) which satisfies
conditions (i) and (ii) of Lemma 4.5. Now, K is non-null, and therefore by the choice
of V , the intersection Ωo(K,V , E(V)) is non-empty and each irreducible component is
of dimension dimK. Since E is generic, each irreducible component of Ωo(IK,W , E)
is of dimension dim IK. Therefore from inclusion (4.1), we obtain the inequality
dimK − dim IK ≤ 0. But dimK − dim IK equals(

dim Gr(d′, r′,Zd,r) − dim Gr(d′, r′,ZD,n)
)

+
(∑

p∈S

r′∑
b=1

(n − r′ + b − ip
kp

b
− (r − r′ + b − kp

b ))
)

= −χ(d′, r′, D − d, n − r) +
∑
p∈S

∑
a∈Kp

(n − r + a − ipa).

Therefore inequality (†IK) holds.
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Remark 4.6. From the above calculation, we see that dimK − dim IK is the same
as the left hand side of the inequality (†IK).

4.1. Universal families. Let I = (d, r, D, n, I) be a Schubert state and W a
vector bundle of degree −D and rank n on P1.

Definition 4.7. Let U(I,W) be the scheme consisting of pairs (V , E) where E ∈
FlS(W) and V ∈ Ωo(I,W , E).

The rigorous scheme-theoretic definition of U(I,W), as well as the proof of the
following basic result, will be given in Section A.1.

Proposition 4.8. Let V̂ be the universal subbundle on P1 ×Gr(d, r,W).

(1) The natural morphism U(I,W) → FlS(V̂) which takes (V , E) to (V , E(V))
is smooth and surjective with connected fibres (see Section 2.2 for the defi-
nition of FlS(V̂)).

(2) If W is evenly split, then U(I,W) is a smooth and connected scheme over
the base field.

4.2. Proof of Lemma 4.5. Use notation from the statement of Lemma 4.5.
Let U(K) be the largest open subset of FlS(Zd,r) such that for any F ∈ U(K),
Ωo(K,Zd,r,F) is a non-empty proper intersection. Since K is assumed to be non-
null, U(K) is non-empty. It is clear that U(K) is invariant under automorphisms of
Zd,r.

By Proposition 4.8, if we let V̂ be the universal subbundle on P1 ×Gr(d, r,W),
there are surjective morphisms

U(I,W)
γ→ FlS(V̂)

η→ Gr(d, r,W).

Since I is non-null, Gr(d, r,W) is non-empty. By Proposition 2.2, the subset UES

of points in Gr(d, r,W) where the subbundle and the quotient bundle are evenly
split is non-empty, open and dense. Consider the subset Û of η−1(UES) consisting of
points (V ,F) so that “F ∈ U(K)”. This definition makes sense because if (V ,F) ∈
η−1(UES), then V is evenly split and U(K) is invariant under automorphisms of Zd,r.
The openness of U(K) ⊆ FlS(Zd,r) implies that Û ⊆ FlS(V̂) is open. For V ∈ UES ⊆
Gr(d, r,W), there exists F ∈ FlS(V) such that (V ,F) ∈ Û (U(K) is non-empty),
and therefore Û 
= ∅. Consider the non-empty open subset γ−1(Û) ⊆ U(I,W).
Using Lemma 4.9 we see that for generic E ∈ FlS(W), Ωo(I,W , E) ∩ γ−1(Û) is
dense in Ωo(I,W , E), and this proves Lemma 4.5.

See Lemma 8.4 of [6] for the proof of the following statement.

Lemma 4.9. Let f : X → Y be a morphism of irreducible schemes and UX a
non-empty open subset of X. Then there exists a non-empty open subset UY of Y
such that for y ∈ UY , UX ∩ f−1(y) is dense in f−1(y).

We note the following corollary to Lemma 4.5:

Corollary 4.10. Suppose that I = (d, r, D, n, I) and K = (d′, r′, d, r, K) are non-
null Schubert states. Then IK is non-null.

Proof. Let W = ZD,n. By Lemma 4.5, for generic E ∈ FlS(W), there exists
V ∈ Ωo(I,W , E) such that Ωo(K,V , E(V)) 
= ∅. Using the inclusion Remark 4.3,
Ωo(IK,W , E) 
= ∅ and since E ∈ FlS(W) is generic, IK is non-null. �
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5. Tangent spaces

In this section we denote the Zariski tangent space of a scheme X at a point
x ∈ X by T (X)x. See Section 2.7 of [29] for the following description of the tangent
space of a Schubert variety:

Lemma 5.1. Let I = {i1 < · · · < ir} ∈
(
[n]
r

)
and let W be a vector space of

dimension n. Let E• be a complete flag on W and V ∈ Ωo
I(E•). Let E•(V ) and

E•(W/V ) denote the induced flags on V and W/V , respectively. Then

T (Ωo
I(E•))V ⊆ T (Gr(r, W ))V = Hom(V, W/V )

is given by

T (Ωo
I(E•))V = {φ ∈ Hom(V, W/V ) | φ(Ea(V )) ⊆ Eia−a(W/V ) for a ∈ [r]}.

Lemma 5.2. Let I be a Schubert state of the form (d, r, D, n, I), W a vector bundle
of degree −D and rank n on P1, E ∈ FlS(W), and V ∈ Ωo(I,W , E). Then setting
Q = W/V,

T (Ωo(I,W , E))V = {φ ∈ Hom(V ,Q) | φp(Ep
a(V)) ⊆ Ep

ip
a−a

(Q) for p ∈ S, a ∈ [r]}.

Proof. Let E = (Ep
• | p ∈ S) ∈ FlS(W). The tangent space of Gr(r, d,W) at the

point corresponding to V is Hom(V ,Q) (see e.g. [23], Theorem 8.2.1). The tangent
space of Ωo

Ip(Ep
• ) in Gr(r,Wp) is described by Lemma 5.1. The lemma now follows

from the scheme-theoretic description of Ωo(I,W , E) in Definition 4.1. �

Lemma 5.2 motivates the following definition.

Definition 5.3. Let I = (d, r, D, n, I) be a Schubert state, V a vector bundle on
P1 of degree −d and rank r, Q a vector bundle on P1 of degree d − D and rank
n − r, F ∈ FlS(V) and G ∈ FlS(Q). Define

HomI(V ,Q,F ,G) = {φ ∈ Hom(V ,Q) | φp(F p
a ) ⊆ Gp

ip
a−a

for p ∈ S, a ∈ [r]}.

Lemma 5.4. Using the notation of Definition 5.3,

(1) for each (F ,G) ∈ FlS(V) × FlS(Q),

dim HomI(V ,Q,F ,G) ≥ dim I + h1(P1,Hom(V ,Q)),

(2) the set of points (F ,G) ∈ FlS(V)×FlS(Q) for which equality holds in (1) is
open (possibly empty),

(3) if there exists (F ,G) ∈ FlS(V) × FlS(Q) such that dim HomI(V ,Q,F ,G) ≤
dim I, then h1(P1,Hom(V ,Q)) = 0 and the open set in (2) is non-empty.

Proof. For each p ∈ S, consider πp : Hom(V ,Q) → Hom(Vp,Qp) and define

Bp = {ψ ∈ Hom(Vp,Qp) | ψ(F p
a ) ⊆ Gp

ip
a−a

for a ∈ [r]} ⊆ Hom(Vp,Qp).
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It is easy to see that codimension of the vector subspace Bp ⊆ Hom(Vp,Qp) is
codim(ωIp). Therefore

dim HomI(V ,Q,F ,G) = dim
⋂
p∈S

π−1
p (Bp)

≥ h0(P1,Hom(V ,Q))−
∑
p∈S

codim(ωIp)

= χ(d, r, D − d, n − r) + h1(P1,Hom(V ,Q))−
∑
p∈S

codim(ωIp)

= dim I + h1(P1,Hom(V ,Q)).

This proves (1). It is easy to deduce (2) from (1) and linear algebra. The assertion
in (3) is a trivial consequence of (1) and (2). �

Proposition 5.5. Let I = (d, r, D, n, I) be a Schubert state. Consider the following
properties:

(α) I is non-null.
(β) For generic (F ,G) ∈ FlS(Zd,r)×FlS(ZD−d,n−r), the dimension of the vector

space HomI(Zd,r,ZD−d,n−r,F ,G) is dim I.
The following implications hold: (β) ⇒ (α) in any characteristic, and (α) ⇒ (β)
in characteristic 0.

Proof. (α) ⇒ (β) in characteristic 0: Let W = ZD,n. We claim that there exists
E ∈ FlS(W) such that

(a) Ωo(I,W , E) is a transverse non-empty intersection,
(b) Ωo(I,W , E) has a dense subset of points V such that both V and W/V are

evenly split.
The first claim (a) is immediate from Kleiman’s transversality theorem. To prove
(b), let U be the open subset of Gr(d, r,W) consisting of V ⊆ W such that both
V and W/V are evenly split. This is non-empty by Proposition 2.2. By Kleiman’s
transversality theorem each irreducible component of the intersection of Ωo(I,W , E)
with any irreducible component of the complement of U is of the expected dimen-
sion, which is less than dim I. Therefore Ωo(I,W , E) has a dense intersection with
U , which yields (b).

Now pick a V as in (b). Choose isomorphisms V ∼→ Zd,r and W/V ∼→ ZD−d,n−r.
By property (a) above, T (Ωo(I,W , E))V is of dimension dim I. Hence, using
Lemma 5.2 and Lemma 5.4 (3), we see that (β) holds.

(β) ⇒ (α) in any characteristic: Let (F ,G) be as in (β). Using Lemma 5.4 (3),
H1(P1, Hom(Zd,r,ZD−d,n−r)) = 0 and therefore by Corollary 12.3, Gr(d, r,ZD,n)

= ∅. Using Proposition 2.2, there exists an evenly split subbundle V ⊆ ZD,n such
that the quotient Q = ZD,n/V is also evenly split. Choose isomorphisms V ∼→ Zd,r

and W/V ∼→ ZD−d,n−r and use these to identify (V ,Q) with (Zd,r,ZD−d,n−r).
By an easy computation at each p ∈ S (see e.g. [6], Lemma 2.5), it is easy to see

that there exists E ∈ FlS(W) such that
(1) V ∈ Ωo(I,W , E),
(2) the flags induced by E on V and Q are F and G, respectively.

Therefore by Lemma 5.2, Ωo(I,W , E) is a transverse and hence proper intersection
at V . By Lemma 5.6, I is non-null. �
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Lemma 5.6. Let W be an evenly split bundle, E ∈ FlS(W) and V ∈ Ωo(I,W , E).
Suppose that each irreducible component of Ωo(I,W , E) passing through V is of the
expected dimension (= dim I). Then I is non-null.

Proof. The natural morphism p : U(I,W) → FlS(W) is a morphism between
smooth schemes (see Proposition 4.8). Using some standard results on flatness and
fibres (see e.g. [24], Theorem 23.1), p is flat at V and hence dominant. Therefore I
is non-null. �

6. The main strategy

We will first outline the main ideas in the proof of (B)⇒ (A) in Theorem 2.8. We
use a generalization of the strategy in [6]. Assume condition (B) in Theorem 2.8.
Let V = Zd,r, Q = ZD−d,n−r and let (F ,G) be a generic point of FlS(V)× FlS(Q).

Pick a generic element φ ∈ HomI(V ,Q,F ,G). Set S = ker(φ). The image of
φ is torsion free and hence locally free. Therefore S is a subbundle of V . Let
K = (d′, r′, d, r, K) be the (non-null) Schubert state such that S ∈ Ωo(K,V ,F).
In Section 9 we will prove that the dimension of HomI(V ,Q,F ,G) is given by the
following formula:

dim HomI(V ,Q,F ,G) = dim I + dimK + (dimK − dim IK).

By Remark 4.6 and assumption (B), dimK − dim IK ≤ 0. If dimK = 0, then we
conclude that dim HomI(V ,Q,F ,G) ≤ dim I. Using Proposition 5.5, (β) ⇒ (α)
and Lemma 5.4 (3), we see that (A) holds in this case. We also find that in this
case, dim IK = 0.

If dimK > 0, then Ωo(K,V ,F) is positive-dimensional at S. Let η : S → V/S
be a generic element of the tangent space of Ωo(K,V ,F) at S. Let S ′ be the
kernel of η, and suppose for simplicity that S ′ ∈ Ωo(L,S,F(S)) where dimL = 0.
(If dimL > 0, we will have to pick a generic element in the tangent space of
Ωo(L,S,F(S)) at S ′ and iterate this process.)

Let M = im(φ) ⊆ Q and M′ = im(φ ◦ η) ⊆ Q. For simplicity assume that
M and M′ are subbundles of Q. Let I∗ and K∗ be Schubert states such that
M ∈ Ωo(I∗,Q,G) and M′ ∈ Ωo(K∗,M,G(M)). Since G ∈ FlS(Q) is generic
(see Lemma 6.2), dimK∗ − dim I∗

K∗ ≤ 0. This inequality, together with a suitable
induction hypothesis and a small computation, yields (see Claim 8.1)

dim HomI(V ,Q,F ,G) ≤ dim I + (dimK′ − dim IK′)

where K′ is the Schubert state such that S ′ ∈ Ωo(K′,V ,F). Now assumption (B)
and Remark 4.6 imply that dim HomI(V ,Q,F ,G) ≤ dim I, as desired.

To make such an argument rigorous, we find it necessary to show that S and V/S
are evenly split vector bundles and that the induced pair of flags (F(S),F(V/S)) ∈
FlS(S)×FlS(V/S) is suitably “generic”. It could also very well happen that M and
M′ are not subbundles of Q. We will then replace M and M′ by their saturations
in Q (see Section A.4). Frequently in the theory of vector bundles, the saturations
of subsheaves have “better properties” than the subsheaves.

In Section 6.2, using some results from Section 6.1, we will write down a finite
set of requirements on pairs of flags (F ,G), such that the induced pair of flags
(F(S),F(V/S)) ∈ FlS(S)×FlS(V/S) can also be assumed to have these properties.
The reader may now move on to Section 7 on a first reading.
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6.1. Bounds.

Lemma 6.1. Let D and n > 0 be integers. Let A be the set of pairs of (possibly
null) Schubert states (I,K) of the form I = (d, r, D, n, I) and K = (d′, r′, d, r, K),
such that

(i) Gr(d, r,ZD,n) 
= ∅, Gr(d′, r′,ZD,n) 
= ∅,
(ii) inequality (†IK) fails to hold.

Then the set A is finite.

Proof. Consider the cases:
• n − r > 0 and r′ > 0: It is easy to see that the degrees of coherent

subsheaves of a vector bundle on P1 are bounded above. Therefore, using
hypothesis (i), we deduce that the integers −d′ and −d are bounded above.
By inspecting the inequality (†IK), we now see that there are only finitely
many such (I,K) ∈ A.

• n − r = 0: This implies that D = d and hence (†IK) holds.
• r′ = 0: This implies that d′ = 0 and hence (†IK) holds.

�
Lemma 6.2. For every evenly split vector bundle W on P1, there exists a nonempty
open subset U ⊆ FlS(W) satisfying the following property: For every E ∈ U and
subbundles S ⊆ V ⊆ W, if we let I and K be the Schubert states such that V ∈
Ωo(I,W , E) and S ∈ Ωo(K,V , E(V)), then inequality (†IK) holds.

Proof. The proof uses the same ideas as the proof of (A)⇒ (B) in Theorem 2.8.
Let A be the finite set of (I,K) from Lemma 6.1. Let U be a non-empty open
subset of FlS(W) such that for E ∈ U , Ωo(IK,W , E) is a (possibly empty) proper
intersection, for every (I,K) ∈ A.

Let E , S, V , I and K be as in the statement of the lemma and suppose in-
equality (†IK) fails. From the inclusion (4.1), we deduce that Ωo(IK,W , E) 
= ∅ and
hence (I,K) ∈ A. By Lemma 4.4, the dimension of each irreducible component
of Ωo(K,V , E(V)) is at least dimK. Since (I,K) ∈ A, Ωo(IK,W , E) is a proper
intersection of dimension dim IK. By comparing the dimensions of the two sides of
the inclusion (4.1), we conclude that inequality (†IK) holds (see Remark 4.6) and
hence we reach a contradiction. �
Remark 6.3. Notice that we are not requiring either I or K to be non-null in
Lemma 6.2. Also, we allow the possibilities V = S, W = V and S = 0.

Definition 6.4. For an evenly split vector bundle W on P1, define B(W) ⊆ FlS(W)
to be the largest open subset U ⊆ FlS(W) satisfying the conditions of Lemma 6.2.

6.2. List of genericity properties.

Lemma 6.5. The following objects (1) and (2), satisfying conditions (A) and (B)
described below exist:

(1) for every pair (V ,Q) of evenly split vector bundles of positive ranks on P1,
a non-empty open subset A(V ,Q) ⊆ B(V) × B(Q) ⊆ FlS(V) × FlS(Q) (see
Section 6.1 for the definition of B(V) and B(Q)),

(2) for every Schubert state of the form I = (d, r, D, n, I) where 0 < r < n, a
non-null Schubert state of the form K(I) = (d′(I), r′(I), d, r, K(I)) (here
r′(I) = r or r′(I) = 0 are possible).
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The conditions are: For every Schubert state I = (d, r, D, n, I), any point (F ,G) ∈
A(Zd,r,ZD−d,n−r), setting V = Zd,r and Q = ZD−d,n−r,

(A) for generic φ ∈ HomI(V ,Q,F ,G), setting S = ker(φ),
(a) S ∈ Ωo(K(I),V ,F),
(b) S and V/S are evenly split vector bundles on P1,
(c) if 0 < r′(I) < r, then (F(S),F(V/S)) ∈ A(S,V/S),

(B) the dimension of HomI(V ,Q,F ,G) is given by the formula

(6.1) dim HomI(V ,Q,F ,G) = dim I + dimK(I) + (dimK(I) − dim IK(I)).

The proof of Lemma 6.5 will be given in Section 9.3.

7. The main technical result

Theorem 7.1. Consider a 5-tuple of the form (V ,Q, I,F ,G) where V is an evenly
split vector bundle on P1 of degree −d and rank r, Q an evenly split vector bundle
on P1 of degree d − D and rank n − r, (F ,G) a generic point of FlS(V) × FlS(Q)
and I a Schubert state of the form I = (d, r, D, n, I).

We claim that there exists a filtration by vector subbundles

S(h) � S(h−1) � · · · � S(1) � S(0) = V
and morphisms ηu : S(u) → Q with ker(ηu) = S(u+1) for u = 0, . . . , h − 1, such
that if we define Schubert states K(u) = (du, ru, d, r, K(u)) for u = 1, . . . , h by the
requirement S(u) ∈ Ωo(K(u),V ,F), then

(i) K(1), . . . ,K(h) are non-null Schubert states, and dimK(h) = 0,
(ii) for u = 0, . . . , h − 1, p ∈ S and a ∈ [r],

(ηu)p(S(u)
p ∩ F p

a ) ⊆ Gp
ip
a−a

,

(iii) the dimension of HomI(V ,Q,F ,G) is (see Remark 4.6 for an interpretation
of the expression in parentheses)

(7.1) dim I + (dimK(h) − dim IK(h)).

Remark 7.2. (1) The theorem is valid for any (F ,G) ∈ A(V ,Q) (see Lemma 6.5).
(2) The following possibilities can occur: h = 0 (in this case S(h) = V) or h > 0

and S(h) = 0.

7.1. Proof of (C)⇒ (A) in Theorem 2.8 assuming Theorem 7.1. Assume
condition (C). Let V = Zd,r, Q = ZD−d,n−r, and let (F ,G) be a generic point of
FlS(V) × FlS(Q). Apply Theorem 7.1 to the 5-tuple (V ,Q, I,F ,G) and use the
same notation. By conclusion (i) of Theorem 7.1, K(h) is a non-null Schubert state
and since dimK(h) = 0, 〈K(h)〉 
= 0. Using conclusion (iii) of Theorem 7.1 and the
hypothesis that (†IK(h)) holds (see Remark 2.10 for the cases rh = 0 or rh = r),
dim HomI(V ,Q,F ,G) ≤ dim I. We conclude the proof using Lemma 5.4 (3) and
Proposition 5.5 (β) ⇒ (α).

8. Proof of Theorem 7.1

The proof is by induction on r. If HomI(V ,Q,F ,G) = 0, the filtration is just the
singleton V and h = 0, so no morphisms η needs to be given. Clearly, the condition
in (iii) is satisfied.

Now assume that HomI(V ,Q,F ,G) 
= 0, and pick a generic element φ ∈
HomI(V ,Q,F ,G). Let S be the kernel of φ, and let K = (d′, r′, d, r, K) be the
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non-null Schubert state (K is the same as K(I) from Lemma 6.5) defined by
S ∈ Ωo(K,V ,F) (therefore S is of degree −d′ and rank r′). Since K is non-null,
dimK ≥ 0.

If dimK = 0 (which will be the case for example if r = 1), take S � V (so that
h = 1) to be the filtration and η0 = φ : V → Q. Since dimK = 0, (i) holds. From
φ ∈ HomI(V ,Q,F ,G), we deduce (ii). For (iii), according to equation (6.1), the
dimension of HomI(V ,Q,F ,G) is (since dimK = 0)

dim I + (dimK − dim IK).

Therefore assume dimK > 0, which implies that 0 < r′ < r. Now by our dis-
cussion of genericity (see Lemma 6.5 and Remark 7.2) we may apply the induction
hypothesis on the 5-tuple (S,V/S,K,F(S),F(V/S)).

We therefore find a filtration S(h) � S(h−1) � · · · � S(1) = S and morphisms
γu : S(u) → V/S with ker(γu) = S(u+1) for u = 1, . . . , h − 1 which satisfy the
conclusions of Theorem 2.8 for the 5-tuple (S,V/S,K,F(S),F(V/S)).

We claim that the filtration

S(h) � S(h−1) � · · · � S(1) = S � S(0) = V
and morphisms ηu = φ̄ ◦ γu for u = 1, . . . , h − 1, η0 = φ̄, satisfy conditions (i), (ii)
and (iii) in the theorem (here φ̄ is the morphism V/S → Q induced from φ).

For u = 1, . . . , h, let ru be the rank of S(u) and let du = − deg(S(u)) (so,
d′ = d1 and r′ = r1). Let L(u) = (du, ru, d′, r′, L(u)) be the Schubert state such
that S(u) ∈ Ωo(L(u),S,F(S)). Now set K(u) = KL(u) = (du, ru, d, r, K(u)). By
Remark 4.3, S(u) ∈ Ωo(K(u),V ,F).

Verification of (i): We know that K is non-null (Lemma 6.5) and by the
induction hypothesis, each L(u) is non-null. Therefore by Corollary 4.10, K(u) is
non-null for u = 1, . . . , h.

According to inductive conclusion (iii) for the 5-tuple (S,V/S,K,F(S),F(V/S),

dim HomK(S,V/S,F(S),F(V/S)) = dimK + (dimL(h) − dimKL(h)).

Since F is generic, dimL(h) ≤ dimKL(h) (use the assumption F ∈ B(V), Lemma
6.2 and Remark 4.6). But, by Lemma 5.4,

dim HomK(S,V/S,F(S),F(V/S)) ≥ dimK.

We therefore conclude that dimL(h) = dimKL(h). Inductive conclusion (i) for K
says that dimL(h) = 0. Therefore dimK(h) = dimKL(h) = 0 as desired.

Verification of (ii): We need to verify that for u = 0, . . . , h − 1, p ∈ S and
a ∈ [r],

(8.1) (ηu)p(S(u)
p ∩ F p

a ) ⊆ Gp
ip
a−a

.

Now suppose u, p and a are as above. If u = 0, inclusion (8.1) is clear because
φ ∈ HomI(V ,Q,F ,G). So assume u > 0 and let t be such that F p

a ∩ Sp = F p
t (S).

Clearly, kp
t ≤ a.

From ηu = φ̄ ◦ γu, we see that

(ηu)p(S(u)
p ∩ F p

a ) = φ̄p(γu)p(S(u)
p ∩ F p

t (S)) ⊆ φ̄p(F
p
kp

t −t
(V/S))

where in the last inclusion we have used property (ii) satisfied by the morphisms
γu: (γu)p(S(u)

p ∩ F p
t (S)) ⊆ F p

kp
t −t

(V/S). But,

φ̄p(F
p
kp

t −t
(V/S)) = φ̄p((F

p
kp

t
+ Sp)/Sp) = φp(F

p
kp

t
) ⊆ φp(F p

a ) ⊆ Gp
ip
a−a

.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE MULTIPLICATIVE HORN PROBLEM 387

Verification of (iii): We claim,

Claim 8.1. For u = 1, . . . , h, let

(8.2) b(u) = dimK(u) − dimL(u) + (dimK(u) − dim IK(u)).

Then b(u) ≤ b(u + 1) for u = 1, . . . , h − 1.

The claim implies that b(h) ≥ b(1). But dimL(1) = 0 and therefore by equa-
tion (6.1), dim HomI(V ,Q,F ,G) = b(1) + dim I. Hence, dim HomI(V ,Q,F ,G) ≤
dim I + b(h). Also, from (i) and induction, dim K(h) = dimL(h) = 0. Therefore
the dimension of HomI(V ,Q,F ,G) is less than or equal to the integer (7.1).

But according to Lemma 8.6, the dimension of HomI(V ,Q,F ,G) is at least as
much as the integer (7.1). In conjunction with the above, this says that the dimen-
sion of HomI(V ,Q,F ,G) is equal to the integer (7.1). The proof of Theorem 7.1
would therefore be complete once the claim is proved.

Proof of the claim: For u = 0, . . . , h, let M(u) be the saturation of im(ηu)
in Q, and let M = M(0) be the saturation of im(φ) in Q (see Section A.4 for the
concept of the saturation of a coherent subsheaf of a vector bundle).

The inequality b(u) ≤ b(u + 1) in Claim 8.1 will be obtained by applying the
defining property of G ∈ B(Q) to M(u) ⊆ M(0) = M ⊆ Q (see Definition 6.4). If
im(ηu) and im(φ) were subbundles of Q, then the proof of Claim 5.2 in [6] carries
over immediately. We will carefully keep track, using the concept of parabolic
bundles, of how far M and M′ are from being subbundles and show that the
contributions of the “discrepancies” are such that we can still arrive at the desired
conclusion. We will use some homological algebra-type techniques from the theory
of parabolic bundles in dealing with the inequalities (†IK) (see e.g. Lemma A.4).

8.1. Parabolic bundles and the Horn problem. Let W = ZD,n, and let V � W
be a subbundle. Pick E ∈ FlS(W) and let I = (d, r, D, n, I) be the Schubert state
such that V ∈ Ωo(I,W , E). Consider the parabolic bundle V† = (V , E(V), w) (see
Section A.5 for the notation and basic results) where wp

a = n−r+a−ip
a

n−r for p ∈ S and
a ∈ [r]. Let S ⊆ V be a subbundle and let K = (d′, r′, d, r, K) be the Schubert state
such that S ∈ Ωo(K,V , E(V)). Then,

(n − r) pardeg(S,V†) = −(n − r)d′ +
∑
p∈S

∑
a∈Kp

(n − r + a − ipa)

=
(
−(n − r)d′ + χ(d′, r′, D − d, n − r)

)
+

(
−χ(d′, r′, D − d, n − r) +

∑
p∈S

∑
a∈Kp

(n − r + a − ipa)
)

= χ(0, r′, D − d, n − r) +
(
dimK − dim IK

)
.

(8.3)

We conclude that if W is evenly split and E ∈ B(W) (see Definition 6.4 and
Remark 4.6), then

(8.4) (n − r) pardeg(S,V†) ≤ χ(0, r′, D − d, n − r).

8.2. Return to the proof of Claim 8.1. Let M† be the induced parabolic bundle
corresponding to the subbundle M ⊆ Q and let G ∈ FlS(Q) (see Section 8.1).

For p ∈ S, let ε(p) be the dimension of the kernel of im(φ)p → Qp. Using the
isomorphism V/S ∼→ im(φ) and the snake lemma, we see that the dimension of

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



388 PRAKASH BELKALE

ker(φp) ⊇ Sp is r′ + ε(p) (recall that the rank of S is r′). Let Hp = {hp
1 < · · · <

hp
r′+ε(p)} ∈

(
[r]

r′+ε(p)

)
be such that

(8.5) ker(φp) ∈ Ωo
Hp(F p

• ) ⊆ Gr(r′ + ε(p),Vp).

Introduce the notation

θp(a) = ipa − a for p ∈ S, a ∈ [r],

D∗ = D − d, n∗ = n − r, r∗ = r − r′, d∗ = d − d′,

dM = − deg(M), c =
1

n − r − (r − r′)
=

1
n∗ − r∗

.

Remark 8.2. We think of (W ,V) from Section 4 as being replaced by (Q,M) for
the calculation. Therefore we have denoted the degree and rank of Q by −D∗ and
n∗, respectively, and the rank of M as r∗. The degree of M is (at least) −d∗ plus
some contributions coming from ε(p) (Lemma 8.3).

The fundamental inequality that we are going to use is equation (8.4) with
(S,V ,W , E) replaced by (M(u),M,Q,G) (since G ∈ B(Q) by assumption):

(8.6) (n∗ − r∗) pardeg(M(u),M†) − χ(0, ru − ru+1, D
∗ − dM, n∗ − r∗) ≤ 0.

(Recall that M is a vector bundle of degree −dM and rank r∗ on P1.)
Before we use inequality (8.6), we note some crucial inequalities.

Lemma 8.3. −dM ≥ −d∗ +
∑

p∈S ε(p).

Proof. Let C be the cokernel of the injective morphism of sheaves V/S → M. It
is easy to see that C is a torsion sheaf such that C ⊗ k(p) has dimension ε(p) for
p ∈ S. Therefore h0(C) ≥

∑
p∈S ε(p). The inequality now follows from the equality

of Euler characteristics χ(M) = χ(V/S) + χ(C) and the Riemann-Roch theorem
(note that h1(C) = 0). �
Lemma 8.4. For a ∈ [r′+ε(p)] and p ∈ S, the weight attached to Mp∩Gp

θp(hp
a)

(Qp)
(which is a member of the induced flag Gp

•(M)) in the parabolic bundle M† is at
least

(8.7) c
(
n∗ − r∗ + (hp

a − a) − θp(hp
a)

)
.

Proof. Fix p ∈ S and suppose Mp ∈ Ωo
J (Gp

•) where J = {j1 < · · · < jr∗} ∈
(
[n∗]
r∗

)
.

Now, if dim(Mp ∩Gp
θp(hp

a)
(Qp)) = x and x 
= 0, then jx ≤ θp(hp

a). Also, x ≥ hp
a − a

because
(1) dim φp(F

p
hp

a
(Vp)) = hp

a − a,
(2) φp(F

p
hp

a
(Vp)) ⊆ Mp ∩ Gp

θp(hp
a)

(Qp).

The weight attached to Mp ∩ Gp
θp(hp

a)
(Qp) is c(n∗ − r∗ + x − jx) which is at least

as much as the rational number (8.7). If x = 0, which could happen only when
hp

a = a,
c
(
n∗ − r∗ + (hp

a − a) − θp(hp
a)

)
≤ c(n∗ − r∗) = 1

and the weight attached is ≥ 1. �
Lemma 8.5. The parabolic degree pardeg(M(u),M†) is at least

(du+1−du)+c
∑
p∈S

∑
t∈Lp(u)−Lp(u+1)

(
n∗−r∗+(kp

t −t)−θp(kp
t )

)
−c

∑
p∈S

ε(p)(ru−ru+1).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE MULTIPLICATIVE HORN PROBLEM 389

Proof. For p ∈ S, suppose that

Sp ∈ Ωo
Up(F p

• (ker(φp))), Up = {up
1 < · · · < up

r′} ∈
(

[r′ + ε(p)]
r′

)
.

From the containment (8.5) it follows that Kp = {hp
up

t
| t = 1, . . . , r′} for p ∈ S.

Therefore φp maps F p
kp

t
(Vp) to an element of the flag Gp

•(Mp) whose weight is at
least (by Lemma 8.4)

c
(
n∗ − r∗ + (hp

up
t
− up

t ) − θp(hp
up

t
)
)

= c
(
n∗ − r∗ + kp

t − up
t − θp(kp

t )
)

= c
(
n∗ − r∗ + kp

t − t − θp(kp
t )

)
+ c(t − up

t )

≥ c
(
n∗ − r∗ + (kp

t − t) − θp(kp
t )

)
− cε(p)

where in the last step we have used the inequality t − up
t ≥ −ε(p).

For t = 1, . . . , r′, by the already verified (ii) in Theorem 7.1, (ηu)p(F
p
t (S) ∩

Sp
(u)) ⊆ Mp ∩ Gp

θp(kp
t )

. The statement now follows from Lemma A.4. �

We will now return to the proof of the claim. Using Lemma 8.5 and inequal-
ity (8.6), we obtain the inequality (use c(n∗ − r∗) = 1)

(n∗ − r∗)(du+1 − du) +
∑
p∈S

∑
t∈Lp(u)−Lp(u+1)

(
n∗ − r∗ + (kp

t − t) − θp(kp
t )

)
(8.8)

−
∑
p∈S

ε(p)(ru − ru+1) − χ(0, ru − ru+1, D
∗ − dM, n∗ − r∗) ≤ 0.

The first, third and fourth terms in the above inequality combine to give

(n∗ − r∗)(du+1 − du)−
∑
p∈S

ε(p)(ru − ru+1) − χ(0, ru − ru+1, D
∗ − dM, n∗ − r∗)

(8.9)

= −χ(du − du+1, ru − ru+1, D
∗ − dM −

∑
p∈S

ε(p), n∗ − r∗)

≥ −χ(du − du+1, ru − ru+1, D
∗− d∗, n∗ − r∗)

(using Lemma 8.3 in the last step, and note that −χ(d, r, b, m) is an increasing
function of b with other variables fixed).

We now deduce from inequalities (8.8) and (8.9) that∑
p∈S

∑
t∈Lp(u)−Lp(u+1)

(
n∗ − r∗ + (kp

t − t) − θp(kp
t )

)
(8.10)

− χ(du − du+1, ru − ru+1, D
∗ − d∗, n∗ − r∗)

≤ 0.

Write the left hand side of the inequality (8.10) as A(u) − A(u + 1) where

A(u) =
∑
p∈S

∑
t∈Lp(u)

(
n∗ − r∗ + (kp

t − t) − θp(kp
t )

)
− χ(du, ru, D∗ − d∗, n∗ − r∗)

= B(u) + C(u)
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with (see Remark 4.6)

B(u) = χ(du, ru, d∗, r∗) −
∑
p∈S

∑
t∈Lp(u)

(
r∗ − (kp

t − t)
)

= dimK(u) − dimL(u)

and

C(u) = −χ(du, ru, D∗, n∗) +
∑
p∈S

∑
t∈Lp(u)

(
n∗ − θp(kp

t )
)

= −χ(du, ru, D − d, n − r) +
∑
p∈S

∑
a∈Kp(u)

(n − r + a − ipa).

Therefore b(u) = A(u), and we conclude the proof of Claim 8.1 by observing that
inequality (8.10) gives A(u) ≤ A(u + 1).

8.3. A dimension inequality. The following inequality was used in the proof of
Theorem 7.1:

Lemma 8.6. Suppose that V ,Q,F ,G and I are as in Definition 5.3. Let K be a
Schubert state such that Ωo(K,V ,F) 
= ∅. Then,

dim HomI(V ,Q,F ,G) ≥ dim I + (dimK − dim IK).

Proof. Let K = (d′, r′, d, r, K) and pick S ∈ Ωo(K,V ,F). Then

dim Hom(V/S,Q) ≥ χ(Hom(V/S,Q)) = χ(d − d′, r − r′, D − d, n − r).

Let T = {φ ∈ HomI(V ,Q,F ,G) | φ(S) = 0}. For each p ∈ S we have a morphism
ηp : Hom(V/S,Q) → Hom(Vp/Sp,Qp). Let

W (p) = {ψ ∈ Hom(Vp/Sp,Qp) | ψ(F p
a ) ⊆ Gp

ip
a−a

for a ∈ [r]}.

The dimension of W (p) is
∑

a∈[r]�Kp(ipa − a), and hence its codimension in
Hom(Vp/Sp,Qp) is

(r − r′)(n − r) −
∑

a∈[r]�Kp

(ipa − a) =
∑

a∈[r]�Kp

(n − r + a − ipa).

Therefore

dimT = dim
⋂
p∈S

η−1
p (W (p))

≥ χ(d − d′, r − r′, D − d, n − r) −
∑
p∈S

∑
a∈[r]�Kp

(n − r + a − ipa)

= χ(d, r, D − d, n − r) −
∑
p∈S

r∑
a=1

(n − r + a − ipa)

− χ(d′, r′, D − d, n − r) +
∑
p∈S

∑
a∈Kp

(n − r + a − ipa),

which gives the desired inequality �
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8.4. Proof of Theorem 2.8. We have already proved (A) ⇒ (B) (Section 4) and
(C) ⇒ (A) (Section 7.1). The implications (B) ⇒ (C) ⇒ (D) are obvious and we
are left with having to prove (D) ⇒ (B). We will assume the basic transversality
result, Proposition 10.1 (which is independent of this section).

Let I = (d, r, D, n, I) be as in the statement of the theorem. Let V = Zd,r and
pick a generic point F ∈ FlS(V). Consider the parabolic bundle V† = (V ,F , w)
where wp

a = n−r+a−ip
a

n−r for p ∈ S and a ∈ [r].
Let S ⊆ V be a non-zero subbundle, and let K be the Schubert state such that

S ∈ Ωo(K,V ,F). Then by equation (8.3),

(8.11) rk(S)(n − r)µ(S,V†) = rk(S)
(
(n − r) − (D − d)

)
+

(
dimK − dim IK

)
.

The assumption dim I ≥ 0 implies that (take K to correspond to S = V above)

µ(V ,V†) ≤ 1 − D − d

n − r
.

Now, suppose by way of contradiction that (D) holds and (B) fails, and let K
be a non-null Schubert state for which inequality (†IK) fails. Let S ∈ Ωo(K,V ,F).
Then by equation (8.11),

(8.12) µ(S,V†) > 1 − D − d

n − r
≥ µ(V ,V†).

Therefore V† is not a semistable parabolic bundle. Let S ′ ⊆ V be the Harder-
Narasimhan maximal contradictor of semistability (see [25]).

Let K′ be the Schubert state such that S ′ ∈ Ωo(K′,V ,F). By the uniqueness
of S ′, the genericity of F and Proposition 10.1, we see that 〈K′〉 = 1. Therefore
by assumption (D), inequality (†IK′) holds. Applying equation (8.11) (with S re-
placed by S ′), we obtain the following inequality which together with the inequality
µ(S ′,V†) ≥ µ(S,V†) contradicts inequality (8.12):

rk(S ′)(n − r)µ(S ′,V†) ≤ rk(S ′)((n − r) − (D − d)).

9. Dimension counts and genericity

9.1. Dimension of HomI(V ,Q,F ,G). We will use notation from Definition 5.3.
Let V and Q be evenly split vector bundles, and let (F ,G) be a generic point
of FlS(V) × FlS(Q). Pick a generic element φ ∈ HomI(V ,Q,F ,G) and let S =
ker(φ). We have already seen that S is a subbundle of V (see Section 6). Let
K = (d′, r′, d, r, K) be the Schubert state such that S ∈ Ωo(K,V ,F).

The aim of this section is to prove the following proposition:

Proposition 9.1. With notation and assumptions as above, HomI(V ,Q,F ,G) is
of dimension

(9.1) dim I + dimK + (dimK − dim IK).

Introduce for convenience, as in Section 8.2, the notation

D∗ = D − d, n∗ = n − r, r∗ = r − r′, d∗ = d − d′.

Let Hom(V ,Q, d′, r′) be the space of morphisms V → Q such that the kernel is a
subbundle of rank r′ and degree −d′ (the scheme structure will be given in Sec-
tion 9.2). We postpone the proof of the following lemma to Section 9.2.
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Lemma 9.2. Hom(V ,Q, d′, r′) is smooth and connected of dimension

dim Gr(d′, r′,V) + χ(d∗, r∗, D∗, n∗).

For each p ∈ S, let Z(p) be the smooth scheme consisting of pairs (C, ψ) where
• C is an r′-dimensional subspace of Vp,
• ψ is a morphism Vp/C → Qp (not necessarily injective).

There is a morphism ηp : Hom(V ,Q, d′, r′) → Z(p) given by φ �→ ((ker(φ))p, φ̄p)
(where φ̄ : V/S → Q is the induced morphism). Let T (p) ⊆ Z(p) be the subscheme
of points (C, ψ) such that

(1) for a ∈ [r], ψ(F p
a ) ⊆ Gp

ip
a−a

,
(2) C ∈ Ωo

Kp(F p
• ).

It is easy to see that T (p) → Ωo
Kp(F p

• ) is a smooth morphism of fibre dimension∑
a∈[r]�Kp(ipa − a). It now follows that T (p) is smooth and

(9.2) codim(T (p), Z(p)) = codim(ωKp) + r∗n∗ −
∑

a∈[r]�Kp

(ipa − a).

Let
Ω =

⋂
p∈S

η−1
p (T (p)).

By our hypothesis, Ω is a dense open subset of HomI(V ,Q,F ,G) and hence is
irreducible. The dimension of Ω is at least

dim Hom(V ,Q, d′, r′) −
∑
p∈S

codim(T (p), Z(p))(9.3)

= dim Gr(d′, r′,Zd,r) + χ(d∗, r∗, D∗, n∗)

−
∑
p∈S

(
codim(ωKp) + (r∗n∗ −

∑
a∈[r]�Kp

(ipa − a))
)

=
(
dim Gr(d′, r′,Zd,r) −

∑
p∈S

codim(ωKp)
)

+
(
χ(d∗, r∗, D∗, n∗)

−
∑
p∈S

∑
a∈[r]�Kp

(n∗ + a − ipa))
)
.

We simplify this expression using the formulas for dimI and dimK and conclude
that the dimension of Ω is at least

dimK +
(
χ(d, r, D∗, n∗) −

∑
p∈S

∑
a∈[r]

(n∗ + a − ipa)(9.4)

− χ(d′, r′, D∗, n∗) +
∑
p∈S

∑
a∈Kp

(n∗ + a − ipa)
)

= dimK + dim I +
(
−χ(d′, r′, D∗, n∗) +

∑
p∈S

∑
a∈Kp

(n∗ + a − ipa)
)
.

Therefore by Remark 4.6, the dimension of HomI(V ,Q,F ,G) is at least as much
as the integer (9.1).

However, this only gives us an inequality. Kleiman’s theorem cannot be applied
because Z(p) may not be homogenous for the group GL(Vp) × GL(Qp).

But we can get an exact expression for the dimension of HomI(V ,Q,F ,G) if we
keep track of the kernels of the morphisms φ̄p : Vp/Sp → Qp. For p ∈ S,
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• as in Section 8.2, let ε(p) be the dimension of the kernel B(p) ⊆ Vp/Sp of
the morphism φ̄p : Vp/Sp → Qp induced from φ,

• define Jp ∈
([r∗]
ε(p)

)
from the requirement B(p) ∈ Ωo

Jp(F p
• (V/S)).

Let Hom(V ,Q, d′, r′, ε) be the space of morphisms φ : V → Q such that the kernel is
a subbundle of rank r′ and degree −d′ and for p ∈ S, the kernel of φp : Vp → Qp is
of dimension r′+ε(p). We postpone the proof of the following lemma to Section 9.2.

Lemma 9.3. Hom(V ,Q, d′, r′, ε) is smooth and connected of dimension

dim Gr(d′, r′,V) + χ(d∗, r∗, D∗, n∗) −
∑
p∈S

ε(p)
(
n∗ − (r∗ − ε(p))

)
.

Let A = Hom(V ,Q, d′, r′, ε). For each p ∈ S, let Y (p) be the smooth scheme
consisting of triples (C, B, ψ) where

• C is an r′-dimensional subspace of Vp,
• B is a ε(p)-dimensional subspace of Vp/C,
• ψ is a morphism Vp/C → Qp with kernel B.

There is a morphism λp : A → Y (p) given by

λp : φ �→ ((ker(φ))p, ker(φp)/(ker(φ))p, φ̄p).

Clearly, the group GL(Vp) × GL(Qp) acts transitively on Y (p). For p ∈ S, let
R(p) ⊆ Y (p) be the subscheme consisting of points (C, B, ψ) such that

(1) C ∈ Ωo
Kp(F p

• ),
(2) B ∈ Ωo

Jp(F p
• (Vp/C)),

(3) for a ∈ [r], ψ(F p
a ) ⊆ Gp

ip
a−a

(where we consider ψ as a morphism Vp → Qp).

For p ∈ S, let
[r] � Kp = {αp(1) < · · · < αp(r∗)}.

It is easy to see that the codimension of R(p) in Y (p) is (fibre R(p) over the set of
choices of (C, B))

codim(ωKp) + codim(ωJp) +
(
(r∗ − ε(p))n∗ −

∑
t∈[r∗]�Jp

(ipαp(t) − αp(t))
)
.

Now, ∑
t∈[r∗]�Jp

(ipαp(t) − αp(t)) =
∑

t∈[r∗]

(ipαp(t) − αp(t)) −
∑
t∈Jp

(ipαp(t) − αp(t))

and

(9.5)
∑

t∈[r∗]

(ipαp(t) − αp(t)) =
∑

a∈[r]�Kp

(
ipa − a

)
.

Therefore codim(R(p), Y (p)) is

(9.6) codim(ωKp)+codim(ωJp)−ε(p)n∗+
∑

a∈[r]�Kp

(n∗+a−ipa)+
∑
t∈Jp

(
ipαp(t)−αp(t)

)
.

It follows from our assumptions that
⋂

p∈S λ−1
p (R(p)) for generic F and G contains

a non-empty dense open subset of HomI(V ,Q,F ,G), of dimension (by Kleiman’s
theorem) dimA −

∑
p∈S codim(R(p), Y (p)). Use the expression for dimA given
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in Lemma 9.3 and equation (9.6) to write the dimension of the intersection⋂
p∈S λ−1

p (R(p)) as a sum of two parts. The first part is

dim Gr(d′, r′,V) −
∑
p∈S

codim(ωKp) + χ(d∗, r∗, D∗, n∗) −
∑
p∈S

∑
a∈[r]�Kp

(
n∗ + a − ipa

)
and the second part is the sum over p ∈ S of the “local discrepancies”

Disc(p) = −ε(p)(n∗ − (r∗ − ε(p))) − codim(ωJp) + ε(p)n∗ −
∑
t∈Jp

(ipαp(t) − αp(t)).

The first part is the same as the integer (9.1) (compare with equations (9.3)
and (9.4)).

We will now show that Disc(p) ≤ 0 for p ∈ S. This will show that the dimension
of HomI(V ,Q,F ,G) for generic (F ,G) is less than or equal (hence equal) to the
integer (9.1) and conclude the proof of Proposition 9.1.

Fix a p ∈ S and let Jp = {j1 < · · · < jε(p)}. Then

codim(ωJp) =
ε(p)∑
�=1

(
r∗ − ε(p) + � − j�

)
.

Therefore

Disc(p) =
ε(p)∑
�=1

(
−n∗ + (r∗ − ε(p)) − (r∗ − ε(p) + � − j�) + n∗ − (ipαp(j�)

− αp(j�))
)

=
ε(p)∑
�=1

(j� − � + αp(j�) − ipαp(j�)
).

Pick φ ∈
⋂

p∈S λ−1
p (R(p)) ⊆ HomI(V ,Q,F ,G). For each t, we have the inclusion

φ̄p(F
p
t (V/S)) ⊆ Gp

(ip
αp(t)−αp(t))

(Q).

Take t = j�. The dimension of the left hand side is j� − � and the right hand
side is of dimension ipαp(j�)

− αp(j�). Therefore j� − � ≤ ipαp(j�)
− αp(j�) and hence

Disc(p) ≤ 0.

9.2. Proofs of Lemma 9.2 and 9.3. Use notation from Section 9.1. We de-
fine F (V ,Q, d′, r′, ε) to be the contravariant functor: (Schemes/κ)→ (Sets) which
assigns to a scheme T over κ the set of data of the form (S,B, φ) where

(a) S is a subbundle of VT (the pull back of V to P1 ×T ) which is fibrewise,
over T , of degree −d′ and rank r′,

(b) φ is a morphism VT
φ→ QT with ker(φ) = S, whose cokernel is flat over T ,

(c) B = (B(p) | p ∈ S) where for p ∈ S, B(p) is a subbundle of (VT /S)p =
(VT /S) |{p}×T of rank ε(p).

The above data is required to satisfy: For p ∈ S, ker(φ̄p) = B(p) and φ̄p :
(VT /S)p → (QT )p has a locally free cokernel (where φ̄ is the induced morphism
VT /S → QT ).

Denote the functor obtained by considering pairs (S, φ) satisfying (a) and (b)
above by F (V ,Q, d′, r′). We make the following observation:

Lemma 9.4. Suppose that the pair (S, φ) satisfies conditions (a) and (b). Then
for t ∈ T , H1(P1,Hom(V/St,Q)) = 0.
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Proof. The morphism φ̄t : V/St ↪→ Q is a sheaf-theoretic injection of vector bundles.
But Q is an evenly split vector bundle, so we can apply Lemma 9.7. �

The functor (Schemes/κ)→ (Sets) which associates to a scheme T over κ the set
Hom(VT ,QT ) is represented by the κ-vector space H = Hom(V ,Q) (considered a
scheme over κ). We have a universal morphism φ : VH → QH on H. Let T be the
cokernel of this morphism. By the method of flattening stratifications ([26], Lecture
8) applied to T and each Tp for p ∈ S, it is clear that each F (V ,Q, d′, r′, ε) (resp.
F (V ,Q, d′, r′)) is representable by a scheme which we denote by Hom(V ,Q, d′, r′, ε)
(resp. Hom(V ,Q, d′, r′)). These schemes coincide on the level of points with the
sets of the same name in Section 9.1.

To motivate the functorial arguments in this section, let us first parameterize
the points of Hom(V ,Q, d′, r′) when both V and Q are evenly split vector bundles.
That is, in the definition above, take T = Spec κ. The set of choices of S satisfying
condition (a) in the definition of the functor F (V ,Q, d′, r′) is parameterized by the
smooth scheme Gr(d′, r′,V).

Now we have to parameterize the possible choices A(S) of φ : V → Q satisfying
condition (b). Consider the vector space H(S) = Hom(V/S,Q). We would not be
interested in S if H(S) did not contain a sheaf-theoretic injection. So suppose that
H(S) contains a sheaf-theoretic injection. By the vanishing of higher cohomology
proven in Lemma 9.7, H1(Hom(V/S,Q)) = 0 and hence the dimension of H(S)
equals χ(Hom(V/S,Q)). Now, A(S) is the open subset of H(S) consisting of
injections. The set of S such that A(S) contains an injection is an open subset of
Gr(d′, r′,V).

To parameterize Hom(V ,Q, d′, r′, ε) when both V and Q are evenly split vector
bundles, we proceed similarly: we select S and

B = (B(p) | p ∈ S) ∈
∏
p∈S

Gr(ε(p),Vp/Sp).

We then shift V/S along B (see Section A.3) and consider morphisms Ψ(V/S,B) →
Q. These morphisms are in one to one correspondence with morphisms φ : V → Q
with ker(φ̄) = S such that B(p) ⊆ ker(φ̄p) for each p ∈ S. For (c), therefore,
we want to consider the open subset of Hom(Ψ(V/S,B),Q) consisting of injective
morphisms such that the corresponding φ̄p : Vp/Sp → Qp has kernel (exactly) B(p)
for each p ∈ S.

Lemmas 9.2 and 9.3 follow from

Lemma 9.5. Let Y be the universal quotient on P1 ×Gr(d′, r′,V).

(1) Consider the diagram

(9.7) Hom(V ,Q, r′, d′, ε) � � i ��

a

��

Hom(V ,Q, r′, d′)

π

������������������������

∏
p∈S Gr(ε(p),Yp)

t

��
Gr(d′, r′,V).
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The morphisms π, a and t are each smooth with connected fibres and i is
an inclusion (here

∏
p∈S Gr(ε(p),Yp) is the fibre product, over Gr(d′, r′,V),

of the Grassmann bundles Gr(ε(p),Yp)).
(2) Hom(V ,Q, r′, d′, ε) is smooth and connected of dimension

dim Gr(d′, r′,V) + χ(d∗, r∗, D∗, n∗) −
∑
p∈S

ε(p)(n∗ − (r∗ − ε(p))).

(3) Hom(V ,Q, r′, d′) is smooth and connected of dimension

dim Gr(d′, r′,V) + χ(d∗, r∗, D∗, n∗).

Proof. Let X = Gr(d′, r′,V). Consider the vector bundle T = Hom(Y , p∗
P1Q)

on P1 ×X. Let UX be the open subset of X consisting of points x such that
H1(P1, Tx) = 0. Let Y be the total space of (pT )∗T over UX . It is clear from
the definition of F (V ,Q, d′, r′) and Lemmas A.1 and 9.4 that there is a natural
morphism Hom(V ,Q, d′, r′) → Y.

On P1 ×Y we have a morphism of sheaves

φ̄ : p∗
P1 ×X(Y) → p∗

P1Q.

Let UY be the open subset of points y of Y such that φ̄y is injective as a morphism
of sheaves on P1 ×{y}. By Lemmas A.1 and A.3, UY represents F (V ,Q, d′, r′).

To represent F (V ,Q, d′, r′, ε), form the Grassmann bundle

X̃ =
∏
p∈S

Gr(ε(p),Yp)

over X. Over X̃, for each p ∈ S we have vector bundles B(p) ⊆ p∗X(Yp). We
can therefore form the shift (a vector bundle on P1 ×X̃; see Section A.3) Ỹ =
Ψ(B, p∗

P1 ×XY). Let T̃ = Hom(Ỹ , p∗
P1Q) on P1 ×X̃. Let U

X̃
be the open subset of

X̃ consisting of points x̃ such that H1(P1, T̃x̃) = 0. Let Ỹ be the total space of
p

X̃∗T̃ over U
X̃

. On P1 ×Ỹ , there is a morphism

φ̃ : p∗
P1 ×X̃

(Ỹ) → p∗
P1Q.

Let UỸ be the open subset of points ỹ of Ỹ such that φ̃ỹ is injective as a morphism
of sheaves on P1 ×{ỹ}.

For each p ∈ S, consider the (composite) morphism on UỸ

φ̄p : p∗X(Yp) → p∗
X̃

(Ỹp)
φ̃p→ Qp.

This morphism has p∗
X̃

(B(p)) in its kernel. We look at the open subset of UỸ

consisting of points where the cokernel of φ̄p is locally free and the kernel is exactly
p∗

X̃
(B(p)) for each p ∈ S. By Lemmas A.1 and A.3, this open subset represents

F (V ,Q, d′, r′, ε).
The smoothness assertions are clear from the above arguments. For the first

dimension formula (the second one is obtained similarly), we need to add the (fibre-
wise over X̃) Euler characteristic of Hom(Ỹ ,Q) to the dimension of the Grassmann
bundle X̃.

• The dimension of X̃ is dim Gr(d′, r′,V) +
∑

p∈S ε(p)(r∗ − ε(p)).
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• The (fibrewise over X̃) degree of Ỹ is −d∗ +
∑

p∈S ε(p) and hence the fibre-
wise Euler characteristic of Hom(Ỹ,Q) is χ(d∗, r∗, D∗, n∗) −

∑
p∈S ε(p)n∗.

�

Remark 9.6. In Lemma 9.5, it is easy to see that t is surjective. However a and π
are smooth and dominant morphisms which need not be surjective. This is because
the morphisms U

X̃
→ Gr(d′, r′,V) and UY → Gr(d′, r′,V) may not be surjective.

Lemma 9.7. Let V ⊆ ZD,n be a coherent subsheaf. Then

(1) Ext1(V ,ZD,n) = H1(P1,Hom(V ,ZD,n)) = 0,

(2) Ext1(V ,ZD,n/V) = H1(P1,Hom(V ,ZD,n/V)) = 0.

Proof. Note the general fact that Ext1(F ,G) = H1(P1,Hom(F ,G)) if F is a locally
free coherent sheaf on P1 and G is any coherent sheaf on P1 (see e.g. [16], Chapter
III, Propositions 6.3 and 6.7).

It is easy to see that V , being torsion free on a smooth curve, is also locally
free. Let H = ZD,n. By tensoring with a suitable OP1(a), we can assume H =
Ok

P1 ⊕ OP1(−1)n−k for some k > 0. Let V =
⊕r

i=1 OP1(ai). Clearly, ai ≤ 0 for
i ∈ [r]. Hence Hom(V ,H) has a decomposition

⊕nr
u=1 OP1(bu) with each bu ≥ −1.

But H1(P1,OP1(b)) = 0 for b ≥ −1. This proves (1). Consider the exact sequence
of sheaves

0 → V → H → H/V → 0
which gives an exact sequence

0 → Hom(V ,V) → Hom(V ,H) → Hom(V ,H/V) → 0.

Therefore H1(P1,Hom(V ,H/V)) is surjected on by H1(P1,Hom(V ,H)) (in the
Zariski topology, H2 of a sheaf on a curve is zero). This proves (2). �

9.3. Open subsets in products of flag spaces. We now come to the proof of
Lemma 6.5. Let V , Q, I and K, d′, r′, ε and Jp for p ∈ S be as in Section 9.1.
Let Ugen(V ,Q, I) be the scheme consisting of triples (F ,G, φ), where F ∈ FlS(V),
G ∈ FlS(Q) and φ ∈ HomI(V ,Q,F ,G), such that

• φ ∈ Hom(V ,Q, d′, r′, ε),
• if S = ker(φ) and for p ∈ S, if we set B(p) to be the kernel of φ̄p : Vp/Sp →
Qp, then

– S ∈ Ωo(K,V ,F),
– for p ∈ S, ε(p) = dim(B(p)) and B(p) ∈ Ωo

Jp(F p
• (V/S)).

Remark 9.8. The fibre of Ugen(V ,Q, I) over (F ,G) ∈ FlS(V)×FlS(W) is the scheme⋂
p∈S λ−1

p (R(p)) ⊆ HomI(V ,Q,F ,G) from Section 9.1. Therefore for generic (F ,G)
∈ FlS(V) × FlS(W), this fibre is dense in HomI(V ,Q,F ,G) (which explains the
subscript “gen”).

We will prove the following lemma in Section 9.4.

Lemma 9.9. (i) The natural morphism Ugen(V ,Q, I) → U(K,V) is smooth and
dominant with connected fibres.

(ii) Ugen(V ,Q, I) is a smooth and connected scheme.

Remark 9.10. The possible non-surjectivity of Ugen(V ,Q, I) → U(K,V) is related to
the dominant morphism a from the diagram (9.7) being (possibly) non-surjective.
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It follows from our assumptions that π : Ugen(V ,Q, I) → FlS(V) × FlS(Q) is
dominant. Let O(I) ⊆ FlS(V)×FlS(Q) be the largest non-empty open subset such
that

• π−1(O(I)) → O(I) is flat (hence open) and surjective,
• for (F ,G) ∈ O(I), the intersection

⋂
p∈S λ−1

p (R(p)) from Section 9.1 has
the expected dimension and is dense in HomI(V ,Q,F ,G).

We will now construct the desired objects (1) and (2) whose existence was claimed
in Lemma 6.5. The Schubert state K(I) required is just K from above. We will
construct A(V ,Q) inductively and so that it is stable under automorphisms of V
and Q.

If r = 1, define A(V ,Q) = FlS(V)s × B(Q). Assume that the construction has
been achieved if r < r0 and we extend it to the case r = r0. The conditions (A)
and (B) in Lemma 6.5 are over a finite set of choices of I. It is enough to satisfy
the conditions for each I, obtain open subsets A(V ,Q, I) and finally set

A(V ,Q) =
⋂
I

A(V ,Q, I).

Fix a Schubert state I and set K = K(I) = (d′(I), r′(I), d, r, K). Consider the
diagram

Ugen(V ,Q, I)

p

��

��π �� FlS(V) × FlS(Q)

U(K,V).

Here p is dominant (Lemma 9.9). Let U be the open subset of U(K,V) consisting
of points (S,F) such that

(a) S and V/S are evenly split,
(b) if 0 < r′(I) < r, then (F(S),F(V/S)) ∈ A(S,V/S).

(Use Lemma 4.5 to see that condition (a) is a non-empty open condition. Use
Lemma 7.1 in [6] to show the non-emptiness of the open locus of points satisfying
(b).)

We finally define

A(V ,Q, I) = π(p−1(U)) ∩ O(I) ∩
(
B(V) × B(Q)

)
which is clearly an open and non-empty subset of FlS(V)×FlS(Q) that satisfies the
conditions (A) and (B) in Lemma 6.5.

9.4. Proof of Lemma 9.9. Let I, K, ε, d, r be as in Section 9.3. Clearly (1)
implies (2) in view of Proposition 4.8 (2).

Let
p : Ugen(V ,Q, I) → U(K,V)

be the natural morphism, let Y be the universal quotient on P1 ×Gr(d′, r′,V) and
let

∏
p∈S Gr(ε(p),Yp) be the fibre product over Gr(d′, r′,V), of the Grassmann

bundles Gr(ε(p),Yp) (as in Lemma 9.5). Note that
∏

p∈S Gr(ε(p),Yp) consists of
pairs (S,B) where S ∈ Gr(d′, r′,V) and B = (B(p) | p ∈ S) ∈

∏
p∈S Gr(ε(p),Vp/Sp).

Let Ũ(K,V) be the scheme parameterizing triples (S,F ,B) where (S,F) ∈
U(K,V) and B = (B(p) | p ∈ S) ∈

∏
p∈S Gr(ε(p),Vp/Sp) such that for every p ∈ S,

B(p) ∈ Ωo
Jp(F p

• (V/S)). Clearly Ũ(K,V) → U(K,V) is smooth with connected fibres.
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Define C by the Cartesian square

C ��

��

Ũ(K,V)

��
Hom(V ,Q, d′, r′, ε) ��

∏
p Gr(ε(p),Yp).

It is easy to see that C parameterizes triples (S, φ,F) such that
• (S,F) ∈ U(K,V),
• ker(φ) = S, φ ∈ Hom(V ,Q, d′, r′, ε),
• for each p ∈ S, the kernel of the morphism φ̄p : Vp/Sp → Qp is in the

Schubert cell Ωo
Jp(F p

• (V/S)) ⊆ Gr(ε(p),Vp/Sp).
By Lemma 9.5, the morphism Hom(V ,Q, d′, r′, ε) →

∏
p Gr(ε(p),Yp) is smooth and

dominant with connected fibres. Therefore the base change C → Ũ(K,V) has the
same properties. We will now prove that Ugen(V ,Q, I) → C is smooth and surjective
with connected fibres. This will conclude the proof of Lemma 9.9.

We will argue “at the level of points” (to be rigorous, we should work at the
level of fibres of functors as in the previous section, but we leave this to the reader).
The fibre of Ugen(V ,Q, I) → C over (S, φ,F) ∈ C is just the set of G = (Gp

• | p ∈
S) ∈ FlS(Q) such that for p ∈ S and a ∈ [r], φp(F p

a ) ⊆ Gp
ip
a−a

. The dimension of
φp(F p

a ) can be expressed by a formula in terms of the given data (independent of
φ). Therefore using Lemma A.3 in [6], the set of G is parameterized by a smooth
and connected scheme whose dimension does not jump as we vary (S, φ,F). This
concludes the proof of Lemma 9.9.

10. Transversality

Proposition 10.1. Let W be an evenly split vector bundle of degree −D and rank
n on P1, and let I be a Schubert state of the form I = (d, r, D, n, I). Then for
generic E ∈ FlS(W),

(1) Ωo(I,W , E) is a (possibly empty) proper intersection which is transverse on
an open dense subset,

(2) if dim I = 0, Ωo(I,W , E) is a smooth and transverse intersection of dimen-
sion 0.

Remark 10.2. The proper intersection statement in (1) follows from Kleiman’s
theorem.

Proof. If I is null, there is nothing to prove, since for generic E , Ωo(I,W , E) = ∅.
Therefore assume that I is non-null and hence Gr(d, r,W) 
= ∅.

Using Proposition 2.2, pick a point V ∈ Gr(d, r,W) such that V and Q = W/V
are both evenly split. Pick a generic point (F ,G) ∈ FlS(V) × FlS(Q). Now find
E ∈ FlS(W) such that V ∈ Ωo(I,W , E) and the flags induced on V and Q at points
of S are F and G, respectively.

Since I is non-null, condition (B), and hence (C), of Theorem 2.8 holds for
the Schubert state I. By the proof of (C)⇒(A) in Section 7.1, the tangent space
HomI(V ,Q,F ,G) of Ωo(I,W , E) at V is of dimension dim I. We have therefore
found a point (V , E) ∈ U(I,W) such that Ωo(I,W , E) is a transverse intersection
at V . Such points clearly form an open subset of U(I,W). Now apply Lemma 4.9
to the morphism U(I,W) → FlS(W) to conclude the proof of (1). If dim I = 0,
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then for generic E , Ωo(I,W , E) is a finite set. Any dense subset of it is equal to it.
Therefore (2) follows from (1). �

Theorem 1.6 is a special case of Proposition 10.1 (2). To see this, note that if
D = 0, Md

r,n = Gr(d, r,O
⊕

n
P1 ) and for generic E (and π as in Theorem 1.6),

π−1(
s∏

j=1

ΩIj (Ej
•)) = π−1(

s∏
j=1

Ωo
Ij (Ej

•)) = Ωo(I,O
⊕

n
P1 , E).

11. Proof of the shift properties from Section 2.5

11.1. Proof of Lemma 2.6. Claim (1) follows from the equality χ(d, r, D−d, n−
r) = χ(d + r, r, D − d + n − r, n − r).

Fix T : ZD,n ⊗OP1(−1) ∼→ ZD+n,n which induces

T ′ : Gr(d, r,ZD,n) ∼→ Gr(r, d + r,ZD+n,n)

and
T̃ : FlS(ZD,n) ∼→ FlS(ZD+n,n).

Clearly, we may assume that both E and T̃ (E) are generic. For E ∈ FlS(ZD,n),

(11.1) T ′ : Ωo(I,ZD,n, E) ∼→ Ωo(J ,ZD+n,n, T̃ (E)).

Parts (2) and (3) follow immediately from the isomorphism (11.1).

11.2. Proof of Proposition 2.7. For (1), we consider two cases.
(a) ip1 = 1: In this case

codim(ωJp) = codim(ωIp) − (n − r), d′ = d − 1

and hence

dim Gr(d − 1, r,ZD−1,n) = dim Gr(d, r,ZD,n) − (n − r).

It is immediate that dim I = dim Sh(p)I.
(b) ip1 
= 1: In this case

codim(ωJp) = codim(ωIp) + r,

d′ = d,

dim Gr(d, r,ZD−1,n) = dim Gr(d, r,ZD,n) + r

and hence
dim I = dim Sh(p)I.

We are going to show that if I is non-null, then Sh(p)I is non-null and that 〈I〉 ≤
〈Sh(p)(I)〉. Since Sh(p)nI = (d − r, r, D − n, n, I) where I = (d, r, D, n, I), the use
of iteration and Lemma 2.6 finishes the proof of (2) and (3).

If I is null, then there is nothing to show. So assume that I is non-null. Let
W = ZD,n and choose a generic point E ∈ FlS(W). Then Ωo(I,W , E) is non-empty
and of dimension dim(I).

Choose a uniformising parameter z at p and define W̃ as follows: W̃ agrees with
W outside of p. In a neighborhood of p, the sections of W̃ are meromorphic sections
s of W such that zs is a holomorphic section of W whose fibre at p is in Ep

1 (this
is a special case of the shift operation from Section A.3). Let J = Sh(p)I. We
claim that W̃ is isomorphic to ZD−1,n. The degree computation is clear. We will
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show that W̃ is evenly split. Without loss of generality assume that (tensor W by
an appropriate OP1(k))

W = O
⊕

u
P1 ⊕OP1(−1)

⊕
(n−u), u 
= n.

Let S = O
⊕

u
P1 ⊆ W . Since E ∈ FlS(W) is generic, we may assume that Ep

1 ∩Sp = 0.
Let W̃ =

⊕n
i=1 OP1(ai). Since W ↪→ W̃ , we should have ai ≥ −1 for i = 1, . . . , n.

We claim that ai ≤ 0 for i = 1, . . . , n and this would prove that W̃ is evenly split.
Assume the contrary, and let OP1(1) → W̃ be a non-zero morphism. Twisting by
O(−p), we have a non-zero morphism OP1 → W̃(−p), or a section s of W̃ that
vanishes at p. Hence s is a global section of W whose fibre at p is in Ep

1 . But this
is in contradiction to the assumption that Sp ∩Ep

1 = 0 (s is necessarily a section of
S). We conclude that W̃ is evenly split.

Induce complete flags on the fibres of W̃ at each point q ∈ S from E ∈ FlS(W) (as
in [4], Appendix) to obtain G ∈ FlS(W̃). There is a set-theoretic bijection between
the set of subbundles of W and the set of subbundles of W̃. The bijection takes
a subbundle V of W to the saturation Ṽ of V in W̃ (see Section A.4). We can
keep track of Schubert states under this bijection (for details see [4], Appendix).
This tells us that if V ∈ Ωo(I,W , E), then Ṽ ∈ Ωo(J , W̃,G) (and vice versa).
From our assumptions Ωo(I,W , E) is non-empty of the expected dimension. Since
dim I = dimJ , we conclude that Ωo(J , W̃ ,G) is also non-empty of the expected
dimension. Hence by Lemma 5.6, J is non-null.

Now assume dim I = 0. The number of points in Ωo(I,W , E) (for E generic) is
exactly 〈I〉 and hence we get 〈I〉 points of Ωo(J , W̃ ,G) where the intersection is
proper. This implies that 〈I〉 ≤ 〈J 〉 as desired.

12. Properties of evenly split vector bundles

Lemma 12.1. Let W be a vector bundle on P1 ×T which is fibrewise, over T , of
degree −D and rank n. Let t0 ∈ T be such that the vector bundle Wt0 is evenly
split. Then there exists an open subset U ⊆ T containing t0 and an isomorphism
ψ : W → p∗

P1ZD,n over U .

Proof. Choose an isomorphism s0 : Wt0
∼→ ZD,n. Now consider the vector bundle

A = Hom(W , p∗
P1(ZD,n)) on P1 ×T . By Lemma 9.7, H1(P1,At0) = 0 and therefore

using standard facts on extension of sections (see e.g. [16], Chapter III, Theorem
12.11), s0 ∈ H0(P1,At0) extends to a neighborhood U of t0. We therefore obtain a
morphism ψ : W → p∗

P1ZD,n over U , which restricts to the isomorphism s0 on the
fibre over t0. We just need to shrink U further to make ψ an isomorphism. �

Lemma 12.2. For every triple of integers (λ, D, n) with n > 0, there exist a smooth
and connected scheme T , a vector bundle T on P1 ×T and a non-empty open subset
UES ⊆ T such that

(1) for every vector bundle W of degree −D and rank n on P1, such that W =∑n
i=1 OP1(ai) with ai ≥ λ for i = 1, . . . , n, there exists t ∈ T such that Tt

is isomorphic to W,
(2) for t ∈ T , Tt

∼→ ZD,n if and only if t ∈ UES .
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Proof. For (1), let us first consider the case λ = 0. Let

T = Ext1(OP1(−D),
n−1⊕
i=1

OP1)

and let T be the universal extension. Property (1) holds because any W as in (1) is
globally generated and is hence an extension of det(W) by

⊕n−1
i=1 OP1 (see e.g. [23],

Lemma 8.5.3). We may tensor T with an appropriate O(a) to deal with the case
λ 
= 0.

Let UES be the set of points t ∈ T such that Tt is evenly split. Clearly by (1),
UES is non-empty. The openness of UES follows from Lemma 12.1 and we obtain
the non-empty open subset UES with the desired property (2). �

12.1. Proof of Proposition 2.2. Consider a point V ∈ Gr(d, r,ZD,n). From
Lemma 9.7, Ext1(V ,H/V) = 0. Thus (see e.g. [23], Theorem 8.2.1), Gr(d, r,ZD,n)
is smooth at V and the irreducible component of Gr(d, r,ZD,n) passing through V
is of dimension χ(Hom(V ,ZD,n/V)) = χ(d, r, D − d, n − r).

Consider the subset UG of Gr(d, r,ZD,n) consisting of evenly split subbundles of
ZD,n. We are going to show that UG is open, irreducible and dense in Gr(d, r,ZD,n).
This will prove the irreducibility of Gr(d, r,ZD,n).

The openness of UG follows from Lemma 12.1. For the irreducibility of UG

we argue as follows: Let Z = Hom(Zd,r,ZD,n). On P1 ×Z, we have a universal
morphism

ψ : p∗
P1Zd,r → p∗

P1ZD,n.

Let U be the largest open subset of P1 ×Z such that the cokernel of ψ is locally
free of rank n− r over U . Let UZ = Z − pZ((P1 ×Z) −U) which is an open set. If
a point z ∈ Z is in UZ , then ψz is an injective morphism of sheaves on P1 with a
locally free cokernel of rank n−r. It is easy to see that there is a natural morphism
UZ → Gr(d, r,ZD,n) and that UG is the image of this morphism. Therefore UG is
irreducible.

We will now show that UG is a dense subset of Gr(d, r,ZD,n). Let the point V ∈
Gr(d, r,ZD,n) with V =

⊕r
l=1 OP1(al) and let λ = inf l al−1. Apply Lemma 12.2 to

the triple (λ, d, r) and obtain a smooth and connected scheme T , a vector bundle
T on P1 ×T , and a non-empty open subset UES ⊆ T .

Consider the vector bundle A = Hom(T , p∗
P1ZD,n) on P1 ×T . Let t0 ∈ T be

such that Tt0 is isomorphic to V . Now find a section s0 ∈ H0(P1,At0) that corre-
sponds to the inclusion V ⊆ ZD,n. According to Lemma 9.7, H1(P1,At0) = 0. By
Grauert’s theorem (see e.g. [16], Chapter III, Corollary 12.9) there exists an open
neighborhood U of t0 and a section s of A on p−1

T (U) which restricts to s0 at t0.
Said in a different way, there is a morphism f : T → p∗

P1ZD,n on P1 ×U which
restricts to the given embedding V ⊆ ZD,n on P1 ×{t0}. It follows that we can
shrink U and assume that f is injective with a locally free cokernel. By the univer-
sal property of quot schemes, f corresponds to a morphism Θ : U → Gr(d, r,ZD,n).
Now pick a t′ ∈ U ∩ UES and restrict f to P1 ×{t′}. This gives us an embedding
Zd,r ⊆ ZD,n. Therefore Θ(U) meets UG and contains the point V ∈ Gr(d, r,ZD,n).
Since U is irreducible, we have thus shown the density of UG in Gr(d, r,ZD,n).

By Grassmann duality Gr(d, r,ZD,n) ∼→ Gr(D − d, n − r,Z∨
D,n) (which takes

V ⊆ ZD,n to (W/V)∨ ⊆ Z∨
D,n = Z−D,n) and the irreducibility of Gr(d, r,ZD,n),
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the subset of Gr(d, r,ZD,n) consisting of points V such that both V and ZD,n/V
are evenly split, is open and dense. The proof is therefore complete.

Corollary 12.3. The following are equivalent:
(1) Gr(d, r,ZD,n) is non-empty.
(2) H1(P1,Hom(Zd,r,ZD−d,n−r)) = 0.

Proof. If Gr(d, r,ZD,n) is non-empty, pick V ∈ Gr(d, r,ZD,n) such that both V and
ZD,n/V are evenly split. We can now apply Lemma 9.7 and deduce (1) ⇒ (2).

For (2) ⇒ (1), let V = Zd,r and Q = ZD−d,n−r. Let λ be such that (V ⊕
Q)⊗OP1(−λ) is globally generated. Apply Lemma 12.2 to the triple (λ, D, n) and
obtain a smooth and connected scheme T , a vector bundle T on P1 ×T and a non-
empty open subset UES ⊆ T . By construction, there is a point t0 ∈ T such that
V ⊕Q ∼→ Tt0 .

Form the relative quot scheme p : Quot(T /T ) → T . The fibre of Quot(T /T )
over a point t ∈ T is the ordinary quot scheme of quotients of Tt of degree −(D−d)
and rank n − r . The projection π : V ⊕Q → Q defines a point of Quot(V ⊕Q) =
Quot(T /T )t0 . By assumption, H1(P1,Hom(V ,Q)) = 0; hence the quot scheme
Quot(V ⊕ Q) is smooth at π of dimension χ(P1,Hom(Zd,r,ZD−d,n−r)). We now
apply standard deformation theory (see e.g. [21] Theorem 5.17) to deduce that p
is flat at π and hence dominant. We can now conclude the proof because T has a
non-empty open subset of points t such that the vector bundle Tt on P1 is evenly
split. �

Appendix A. Representability criteria and vector bundles

A.1. Proof of Proposition 4.8. Let I = (d, r, D, n, I) be a Schubert state and W
a vector bundle of degree −D and rank n on P1. Let F (I,W) be the contravariant
functor (Schemes/κ)→ (Sets) which assigns to a scheme T over κ the set of pairs
(V , E) where

(i) V is a subbundle of WT on P1 ×T which is fibrewise, over T, of degree −d
and rank r (here WT is the pull back of W under the morphism P1 ×T →
P1),

(ii) E = (Ep
• | p ∈ S) where Ep

• is a complete filtration of (WT )p = (WT ) |{p}×T

by subbundles.
The above data is required to satisfy: For each p ∈ S, the rank of Vp → (WT )p/Ep

�

(see Section 1.7) is r − a for ipa ≤ � < ipa+1, a = 0, . . . , r (ip0 = 0 and ipr+1 = n).
Let T , V and E be as in the definition above. For p ∈ S, the vector bundle Vp

on T gets a complete induced filtration (by subbundles). The idea is to rewrite
the definition of F (I,W) by including this data. The functor F (I,W) is naturally
equivalent to the functor which assigns to a scheme T over κ the set of data (V , E ,F)
where

(1) V and E are as in (i) and (ii) in the definition of the functor F (I,W),
(2) F = (F p

• | p ∈ S) where F p
• is a complete filtration of Vp = V |{p}×T by

subbundles.
The above data is required to satisfy

(a) for p ∈ S, F p
a ⊆ Ep

ip
a

for a ∈ [r],
(b) Vp/F p

a → (WT )p/Ep
� is injective with locally free cokernel for ipa ≤ � < ipa+1

and a ∈ [r].
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If we ignore condition (b), the desired representing scheme is the topmost element
A in a tower of Grassmann bundles ([6], Lemma A.3) over FlS(V̂) where V̂ is the
universal subbundle on Gr(d, r,W). The idea is to “choose the flags on W after
you have decided what the induced ones on V should be”. The condition (b) makes
the representing scheme an open subscheme of A.

It is now easy to see that this representing scheme coincides at the level of
points with U(I,W). Clearly U(I,W) → FlS(V̂) is surjective. Since A is smooth
over FlS(V̂) with connected fibres, conclusion (1) of Proposition 4.8 follows. If
W is evenly split, then by Proposition 2.2, Gr(d, r,W) is smooth and connected.
Therefore FlS(V̂) and hence A are smooth and connected. Any open subset of a
smooth and connected scheme is smooth and connected, and hence conclusion (2)
of Proposition 4.8 holds.

A.2. More representability. Let p : X → Y be a projective morphism of schemes
and let V be a coherent sheaf on X which is flat over Y . Let F be the contravariant
functor (Schemes/Y )→ (Sets) which assigns to a scheme T over Y the set F (T ) =
H0(XT ,VT ) (here V is the pull back of V to XT = X ×Y T ). The following lemma
is immediate:

Lemma A.1. In the above situation assume that
(a) p∗V is a vector bundle on Y ,
(b) for any morphism f : T → Y , if

(A.1) XT

p′

��

f ′
�� X

p

��
T

f �� Y

is the base change Cartesian square, the natural morphism f∗p∗V → p′∗f
′∗V

is an isomorphism.
Then the functor F is represented by the total space of the vector bundle p∗V.

Conditions (a) and (b) in Lemma A.1 hold in each of the following two cases:
(1) Y = Spec(κ). This is because cohomology commutes with flat base change

(see e.g. [16], Chapter III, Proposition 9.3).
(2) The higher direct images of V vanish. In fact it is sufficient to assume that

for all points y ∈ Y , H1(p−1(y),Vy) = 0 ([26], Corollary 1 from Lecture 7).

A.3. Shift operations. Fix a point p ∈ P1. We have a natural inclusion of sheaves
OP1 ⊆ OP1(p). Given a uniformising parameter z at p, we have an isomorphism
OP1(p) z→ OP1 in a sufficiently small neighborhood of p.

Let V be a vector bundle on P1 ×T , p ∈ P1 and let B ⊆ Vp be a subbundle (Vp is a
vector bundle on {p}×T ). There is a canonical inclusion V ⊆ V(p) = V⊗p∗

P1OP1(p).
We will define a new “shifted” sheaf Ṽ such that V ⊆ Ṽ ⊆ V(p): Ṽ coincides

with V outside of (P1 −{p})× T and in a neighborhood of {p} × T , it is the kernel
of the composite V(p) z→ V → (Vp/B) where the first morphism is multiplication
by z. Clearly, Ṽ is independent of the choice of the uniformising parameter z.

It is useful to have a local model of this operation: If t ∈ T , there exists an open
subset Ut of T containing t, a neighborhood U ′ of {p}×Ut in P1 ×T , and a splitting
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V = C ⊕ T on U ′ such that C restricted to {p} × Ut is the same as B. On U ′, Ṽ is
identified with the subsheaf C(p) ⊕ T of V(p).

We can perform the shift operation at various points on P1 simultaneously. Let
V be a vector bundle on P1 ×T and for p ∈ S, suppose B = (B(p) | p ∈ S)
where B(p) ⊆ Vp is a subbundle. Then we form the shift Ψ(V ,B) which satisfies
V ⊂ Ψ(V ,B) ⊂ V ⊗ p∗

P1OP1(
∑

p∈S p).

Lemma A.2. (1) Ṽ is locally free, the quotients Ṽ/V and V(p)/Ṽ are flat over T ,
and the formation of Ṽ commutes with base change in T .

(2) For p ∈ S, V → Ṽ has cokernel B(p) ⊗ OP1(p), and Vp → Ṽp has kernel
B(p).

(3) For any vector bundle Q on P1 ×T , Hom(Ṽ ,Q) ↪→ Hom(V ,Q) and there
is a one to one correspondence between the following objects:
(a) morphisms ψ : V → Q such that B(p) ⊆ ker(ψp) for p ∈ S,
(b) morphisms ψ̃ : Ṽ → Q.
Moreover, for ψ as in (a), ψ is injective with the cokernel flat over T , if
and only if the same is true for ψ̃.

Proof. This is immediate from the local model of the shift operation. For the
flatness assertion use Lemma A.3. �

Lemma A.3. Let V and Q be vector bundles on P1 ×T , and let ψ : V → Q be a
morphism. The following are equivalent:

(1) ψ is injective and the cokernel of ψ is flat over T .
(2) For all t ∈ T , ψt is injective as a morphism of sheaves.

Proof. (1) ⇒ (2) is obvious from the definition of flatness. For (2) ⇒ (1) we reason
as follows: Let S = ker(ψ) and T = im(ψ). There are exact sequences

0 → S → V → T → 0, 0 → T → Q → W → 0.

For t ∈ T , Vt � Tt. The injectivity of ψt implies that Tt → Qt is also injective,
and therefore by the long exact sequence for the Tor functor, TorT

1 (W , kt) = 0
where kt is the residue field of t in T .

Therefore, by the local criterion for flatness (see e.g. [9], Theorem 6.8) W is flat
over T . The flatness of Q and W over T implies that T and hence S are also flat
over T . The injectivity of ψt implies that Vt → Tt is also an injection. Since T is
flat over T , St = 0, and therefore S = 0 as desired. �

A.4. Saturation of subbundles. Let W be a vector bundle on a smooth curve
and let V ⊆ W be a coherent subsheaf. Let Ṽ ⊆ W be the inverse image of the
torsion subsheaf of W/V under the morphism W → W/V . The sheaf Ṽ, which is a
subbundle of W containing V , is called the saturation of V in W .

A.5. Parabolic bundles. A parabolic bundle on P1 with parabolic structure along
S is a triple W† = (W , E , w) consisting of a vector bundle W on P1, E ∈ FlS(V),
and a function w : S× [n] → R where n = rkW , such that, denoting w(p, a) by wp

a,

wp
1 ≥ wp

2 ≥ · · · ≥ wp
n ≥ wp

1 − 1.

We define wp
0 = wp

n + 1. Informally, we will think of wp
a as the weight attached to

Ep
a.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



406 PRAKASH BELKALE

For a parabolic bundle W† as above and a subbundle V⊆W , let I = (d, r, D, n, I)
be the Schubert state such that V ∈ Ωo(I,W , E).

(1) The parabolic degree of V is defined to be

pardeg(V ,W†) = −d +
∑
p∈S

∑
a∈Ip

wp
a.

(2) If r 
= 0, the parabolic slope of V is defined to be

µ(V ,W†) =
pardeg(V ,W†)

r
.

A parabolic bundle W† as above is said to be semistable if for all non-zero subbun-
dles V ⊆ W , µ(V ,W†) ≤ µ(W ,W†).

Lemma A.4. Let W† be a parabolic bundle as above and let ψ : V ↪→ W be a
coherent subsheaf of degree −d and rank r. Let Ṽ be the saturation of V in W.
Suppose that there is an F = (F p

• | p ∈ S) ∈ FlS(V) and a function γ : S × [r] →
{0} ∪ [n] such that ψp(F p

a ) ⊆ Ep
γp(a) for p ∈ S and a ∈ [r]. Then

pardeg(Ṽ,W†) ≥ −d +
∑
p∈S

r∑
a=1

wp
γp

a
.

Proof. Let B(p) = ker(ψp) and ε(p) = dimB(p). Let I = (d′, r, D, n, I) be the
Schubert state such that Ṽ ∈ Ωo(I,W , E). It is easy to see that deg(Ṽ) ≥ −d +∑

p∈S ε(p) and hence

pardeg(Ṽ,W†) ≥ −d +
∑
p∈S

ε(p) +
∑
p∈S

∑
a∈Ip

wp
a.

Lemma A.4 now follows from

Claim A.5. For each p ∈ S, ε(p) +
∑

a∈Ip wp
a ≥

∑r
a=1 wp

γp(a).

For the claim, fix a p ∈ S and let Ip = {i1 < · · · < ir}. Assume B(p) ∈ Ωo
H(F p

• )
where H = {h1 < · · · < hε(p)} and set {u1 < · · · < ur−ε(p)} = [r] � H. For
t ∈ [r − ε(p)], dim ψp(F p

ut
) ≥ t. This implies that for such t, ipt ≤ γp(ut) and hence

wp
ip
t
≥ wp

γp(ut)
. Therefore

r∑
a=1

wp
γp(a) −

∑
a∈Ip

wp
a ≤

ε(p)∑
�=1

wp
γp(h�)

−
r∑

a=r−ε(p)+1

wp
ia

=
ε(p)∑
�=1

(
wp

γp(h�)
− wp

ir−ε(p)+�

)

≤
ε(p)∑
�=1

1 = ε(p). �
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