Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Quantum generalization of the Horn conjecture


Author: Prakash Belkale
Journal: J. Amer. Math. Soc. 21 (2008), 365-408
MSC (2000): Primary 14N35, 14D20
DOI: https://doi.org/10.1090/S0894-0347-07-00584-X
Published electronically: October 25, 2007
MathSciNet review: 2373354
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The following results are presented in this paper:

(1) a quantum (multiplicative) generalization of the Horn conjecture which gives a recursive characterization of the possible eigenvalues of a product of unitary matrices,

(2) the saturation conjecture for the fusion structure coefficients for SL$ (n)$,

(3) transversality statements for quantum Schubert calculus in any characteristic for the ordinary Grassmannians,

(4) determination of the smallest power of $ q$ in an arbitrary (small quantum) product of Schubert varieties in an ordinary Grassmannian.


References [Enhancements On Off] (What's this?)

  • 1. S. Agnihotri, Quantum cohomology and the verlinde algebra, Ph.D. thesis, University of Oxford, 1995.
  • 2. S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett. 5 (1998), no. 6, 817-836. MR 1671192 (2000a:14066)
  • 3. Arnaud Beauville, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Ramat Gan), Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., 1996, pp. 75-96. MR 1360497 (97f:17025)
  • 4. Prakash Belkale, Local systems on $ \mathbb{P}\sp 1-S$ for $ S$ a finite set, Compositio Math. 129 (2001), no. 1, 67-86. MR 1856023 (2002k:14085)
  • 5. -, Transformation formulas in quantum cohomology, Compos. Math. 140 (2004), no. 3, 778-792. MR 2041780 (2004m:14119)
  • 6. -, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), no. 1, 133-173. MR 2177198 (2006i:14051)
  • 7. Aaron Bertram, Quantum Schubert calculus, Adv. Math. 128 (1997), no. 2, 289-305. MR 1454400 (98j:14067)
  • 8. Indranil Biswas, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math. 9 (1998), no. 5, 523-533. MR 1644048 (99m:14063)
  • 9. David Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • 10. W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry--Santa Cruz, 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45-96. MR 1492534 (98m:14025)
  • 11. W. Fulton and C. Woodward, On the quantum product of Schubert classes, J. Algebraic Geom. 13 (2004), no. 4, 641-661. MR 2072765 (2005d:14078)
  • 12. William Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209-249 (electronic). MR 1754641 (2001g:15023)
  • 13. -, Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients, Linear Algebra Appl. 319 (2000), no. 1-3, 23-36, Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999). MR 1799622 (2002a:15024)
  • 14. Doron Gepner, Fusion rings and geometry, Comm. Math. Phys. 141 (1991), no. 2, 381-411. MR 1133272 (92j:81271)
  • 15. -, Foundation of rational conformal field theory 1, hep-th/9211100, 1992.
  • 16. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57:3116)
  • 17. Alfred Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241. MR 0140521 (25:3941)
  • 18. Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287-297. MR 0360616 (50:13063)
  • 19. Alexander A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), no. 3, 419-445. MR 1654578 (2000b:14054)
  • 20. Allen Knutson and Terence Tao, The honeycomb model of $ {\rm GL}\sb n({\bf C})$ tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), no. 4, 1055-1090. MR 1671451 (2000c:20066)
  • 21. János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • 22. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, Amer. Math. Soc., Providence, RI, 1997, pp. 607-653. MR 1416351
  • 23. J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997, translated by A. Maciocia. MR 1428426 (98a:14019)
  • 24. Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, translated from the Japanese by M. Reid. MR 1011461 (90i:13001)
  • 25. V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205-239. MR 575939 (81i:14010)
  • 26. David Mumford, Lectures on curves on an algebraic surface, with a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285 (35:187)
  • 27. Christian Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996), no. 1, 217-235. MR 1394754 (97h:14022)
  • 28. Alexander Postnikov, Affine approach to quantum Schubert calculus, Duke Math. J. 128 (2005), no. 3, 473-509. MR 2145741 (2006e:05182)
  • 29. Frank Sottile, Pieri's formula via explicit rational equivalence, Canad. J. Math. 49 (1997), no. 6, 1281-1298. MR 1611668 (2000b:14070)
  • 30. -, Real rational curves in Grassmannians, J. Amer. Math. Soc. 13 (2000), no. 2, 333-341. MR 1706484 (2000j:14080)
  • 31. -, Elementary transversality in the Schubert calculus in any characteristic, Michigan Math. J. 51 (2003), no. 3, 651-666. MR 2021013 (2004i:14065)
  • 32. Ravi Vakil, Schubert induction, Ann. of Math. (2) 164 (2006), no. 2, 489-512. MR 2247966
  • 33. Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 357-422. MR 1358625 (98c:58016)
  • 34. Alexander Yong, Degree bounds in quantum Schubert calculus, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2649-2655 (electronic). MR 1974319 (2004c:14102)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14N35, 14D20

Retrieve articles in all journals with MSC (2000): 14N35, 14D20


Additional Information

Prakash Belkale
Affiliation: Department of Mathematics, University of North Carolina–Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, North Carolina 27599
Email: belkale@email.unc.edu

DOI: https://doi.org/10.1090/S0894-0347-07-00584-X
Received by editor(s): July 22, 2005
Published electronically: October 25, 2007
Additional Notes: The author was partially supported by NSF grant DMS-0300356.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society