On the radius of injectivity of null hypersurfaces

Authors:
Sergiu Klainerman and Igor Rodnianski

Journal:
J. Amer. Math. Soc. **21** (2008), 775-795

MSC (2000):
Primary 35J10

DOI:
https://doi.org/10.1090/S0894-0347-08-00592-4

Published electronically:
March 18, 2008

MathSciNet review:
2393426

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the regularity of past (future) boundaries of points in regular, Einstein vacuum spacetimes. We provide conditions, expressed in terms of a space-like foliation and which imply, in particular, uniform bounds for the curvature tensor, sufficient to ensure the local nondegeneracy of these boundaries. More precisely we provide a uniform lower bound on the radius of injectivity of the null boundaries of the causal past (future) sets . Such lower bounds are essential in understanding the causal structure and the related propagation properties of solutions to the Einstein equations. They are particularly important in construction of an effective Kirchoff-Sobolev type parametrix for solutions of wave equations on . Such parametrices are used by the authors in a forthcoming paper to prove a large data break-down criterion for solutions of the Einstein vacuum equations.

**[A1]**M. Anderson,*Regularity for Lorentz metrics under curvature bounds*, J. Math. Phys.**44**(2003), 2994-3012. MR**1982778 (2004c:53104)****[A2]**M. Anderson,*Cheeger-Gromov theory and applications to General Relativity*, in: The Einstein Equations and the Large Scale Behavior of Gravitational Fields (Cargese 2002), Ed. P.T. Chruściel and H. Friedrich, Birkauser, Basel (2004), 347-377. MR**2098921 (2005f:53055)****[A3]**M. Anderson,*On long-time evolution in general relativity and geometrization of -manifolds*, Comm. Math. Phys.**222**(2001), 533-567. MR**1888088 (2003d:53113)****[AC]**M. Anderson, J. Cheeger,*Diffeomorphism finiteness for manifolds with Ricci curvature and curvature bounded*, GAFA**1**(1991), 231-251. MR**1118730 (92h:53052)****[Br]**Y. Choquét-Bruhat,*Theoreme d'Existence pour certains systemes d'equations aux derivees partielles nonlineaires*, Acta Math.**88**(1952), 141-225. MR**0053338 (14:756g)****[Ch]**J. Cheeger,*Finiteness theorems for Riemannian manifolds*, Am. J. Math.**9**2 (1970), 61-75. MR**0263092 (41:7697)****[C-K]**D. Christodoulou, S. Klainerman,*The global nonlinear stability of the Minkowski space*, Princeton Math. Series**41**, 1993. MR**1316662 (95k:83006)****[Fried]**H.G. Friedlander,*The Wave Equation on a Curved Space-time*, Cambridge University Press, 1976. MR**0460898 (57:889)****[G]**G. Galloway,*Maximum principles for null hypersurfaces and null splitting theorems*, Ann. Henri Poincare**1**(2000), 543-567. MR**1777311 (2002b:53052)****[HE]**S.W. Hawking, G.F.R. Ellis,*The Large Scale Structure of Space-time*, Cambridge University Press, Cambridge, 1973. MR**0424186 (54:12154)****[HKM]**T.J.R. Hughes, T. Kato and J.E. Marsden,*Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity*, Arch. Rational Mech. Anal.**63**(1977), 273-394. MR**0420024 (54:8041)****[KR1]**S. Klainerman and I. Rodnianski,*Causal geometry of Einstein-Vacuum spacetimes with finite curvature flux*Inventiones Math. 2005, vol. 159, No. 3, 437-529. MR**2125732 (2006e:58042)****[KR2]**S. Klainerman and I. Rodnianski,*A geometric approach to Littlewood-Paley theory*, GAFA**16**(2006), 126-163. MR**2221254 (2007e:58046)****[KR3]**S. Klainerman and I. Rodnianski,*Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux*, GAFA**16**(2006), 164-229. MR**2221255 (2007e:58047)****[KR4]**S. Klainerman and I. Rodnianski,*A Kirchoff-Sobolev parametrix for the wave equation in curved space-time*, preprint**[KR5]**S. Klainerman and I. Rodnianski,*A large data break-down criterion in General Relativity*, submitted to J. Amer. Math. Soc.**[PSW]**P. Petersen, S.D. Steingold, G. Wei,*Comparison geometry with integral curvature bounds*, GAFA**7**(1997), 1011-1030. MR**1487752 (99c:53022)****[Pe]**P. Peterson,*Convergence theorems in Riemannian geometry*, MSRI publications, volume**30**, 1997. MR**1452874 (98k:53049)****[Sob]**S. Sobolev,*Methodes nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales*, Matematicheskii Sbornik, vol. 1 (43) 1936, 31-79.**[Wang]**Q. Wang,*Causal geometry of Einstein vacuum space-times.*Ph.D. thesis, Princeton University, 2006.

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
35J10

Retrieve articles in all journals with MSC (2000): 35J10

Additional Information

**Sergiu Klainerman**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Email:
seri@math.princeton.edu

**Igor Rodnianski**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Email:
irod@math.princeton.edu

DOI:
https://doi.org/10.1090/S0894-0347-08-00592-4

Received by editor(s):
March 5, 2006

Published electronically:
March 18, 2008

Additional Notes:
The first author is supported by NSF grant DMS-0070696

The second author is partially supported by NSF grant DMS-0406627

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.