Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras


Author: Shrawan Kumar
Journal: J. Amer. Math. Soc. 21 (2008), 797-808
MSC (2000): Primary 22E70, 22E67
DOI: https://doi.org/10.1090/S0894-0347-08-00599-7
Published electronically: March 14, 2008
MathSciNet review: 2393427
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a part of the Cachazo-Douglas-Seiberg-Witten conjecture uniformly for any simple Lie algebra $ \mathfrak{g}$. The main ingredients in the proof are: Garland's result on the Lie algebra cohomology of $ \hat{\mathfrak{u}} := \mathfrak{g}\otimes t\mathbb{C}[t]$; Kostant's result on the `diagonal' cohomolgy of $ \hat{\mathfrak{u}}$ and its connection with abelian ideals in a Borel subalgebra of $ \mathfrak{g}$; and a certain deformation of the singular cohomology of the infinite Grassmannian introduced by Belkale-Kumar.


References [Enhancements On Off] (What's this?)

  • [BK] P. Belkale and S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Inventiones Math. 166 (2006), 185-228. MR 2242637 (2007k:14097)
  • [B] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61. MR 0102803 (21:1589)
  • [CDSW] F. Cachazo, M.R. Douglas, N. Seiberg, and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, J. High Energy Phys. 12 (2002). MR 1960462 (2003m:81240)
  • [CS] S.S. Chern and J. Simons, Characteristic forms and geometric invariants, Annals of Math. 99 (1974), 48-69. MR 0353327 (50:5811)
  • [E] P. Etingof, On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, II, Preprint (2004).
  • [EK] P. Etingof and V. Kac, On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, Preprint (2003).
  • [GR] H. Garland and M.S. Raghunathan, A Bruhat decomposition for the loop space of a compact group: A new approach to results of Bott, Proc. Natl. Acad. Sci. USA 72 (1975), 4716-4717. MR 0417333 (54:5389)
  • [Ko0] B. Kostant, Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology 3 (1965), 147-159. MR 0167567 (29:4839)
  • [Ko1] B. Kostant, On $ \wedge({\mathfrak{g}})$ for a semisimple Lie algebra $ \mathfrak{g}$, as an equivariant module over the symmetric algebra $ S({\mathfrak{g}})$, Adv. Stud. Pure Math. 26 (2000), 129-144. MR 1770720 (2001g:17009)
  • [Ko2] B. Kostant, Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, Inventiones Math. 158 (2004), 181-226. MR 2090363 (2005m:17007)
  • [K0] S. Kumar, Geometry of Schubert cells and cohomology of Kac-Moody Lie algebras, J. Diff. Geometry 20 (1984), 389-431. MR 0788286 (86j:17020)
  • [K1] S. Kumar, Rational homotopy theory of flag varieties associated to Kac-Moody groups, in: Infinite Dimensional Groups with Applications, MSRI Publications vol. 4, Springer-Verlag (1985), 233-273. MR 823322 (87c:17026)
  • [K2] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Math. vol. 204, Birkhäuser (2002). MR 1923198 (2003k:22022)
  • [PS] A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1992). MR 0900587 (88i:22049)
  • [S] R. Suter, Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Inventiones Math. 156 (2004), 175-221. MR 2047661 (2005b:17020)
  • [W] E. Witten, Chiral ring of $ Sp(N)$ and $ SO(N)$ supersymmetric gauge theory in four dimensions, Chinese Ann. of Math., Ser. B 24 (2003), 403-414. MR 2024979 (2004k:81387)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 22E70, 22E67

Retrieve articles in all journals with MSC (2000): 22E70, 22E67


Additional Information

Shrawan Kumar
Affiliation: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599–3250
Email: shrawan@email.unc.edu

DOI: https://doi.org/10.1090/S0894-0347-08-00599-7
Keywords: Simple Lie algebra, infinite Grassmannian, Abelian ideal
Received by editor(s): March 15, 2006
Published electronically: March 14, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society