Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system


Authors: Mohammed Lemou, Florian Méhats and Pierre Raphaël
Journal: J. Amer. Math. Soc. 21 (2008), 1019-1063
MSC (2000): Primary 82C70, 35Q55, 35Q75, 85A05, 74H35
DOI: https://doi.org/10.1090/S0894-0347-07-00579-6
Published electronically: November 29, 2007
MathSciNet review: 2425179
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The three dimensional gravitational Vlasov-Poisson system $ \partial_tf+v\cdot\nabla_x f-E_f\cdot\nabla_vf=0$, where $ E_f(x)=\nabla_x \phi_f(x)$, $ \Delta_x\phi_f=\rho_f(x)$, $ \rho_f(x)=\int_{\mathbb{R}^N} f(x,v)dv$, describes the mechanical state of a stellar system subject to its own gravity. Smooth initial data yield unique global in time solutions from a celebrated result by Pfaffelmoser. There exists a hierarchy of physical models which aim at taking into account further relativistic effects. The simplest one is the three dimensional relativistic gravitational Vlasov-Poisson system $ \partial_tf+\frac{v}{\sqrt{1+\vert v\vert^2}}\cdot\nabla_x f-E_f\cdot\nabla_vf=0$ which we study here. A striking feature as observed by Glassey and Schaeffer is that this system now admits finite blow up solutions. Nevertheless, the existence argument is purely obstructive and provides no insight into the description of the singularity formation. We exhibit in this paper a family of finite time blow up self-similar solutions and prove that their blow up dynamic is stable with respect to radially symmetric perturbations. Our analysis applies to the four dimensional gravitational Vlasov-Poisson system as well.


References [Enhancements On Off] (What's this?)

  • 1. Batt, J., Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations 25 (1977), no. 3, 342-364. MR 0487082 (58:6749)
  • 2. Batt, J.; Faltenbacher, W.; Horst, E., Stationary spherically symmetric models in stellar dynamics, Arch. Rat. Mech. Anal. 93, 159-183 (1986). MR 823117 (87i:85001)
  • 3. Binney, J.; Tremaine, S., Galactic Dynamics, Princeton University Press, 1987.
  • 4. Bouchut, F.; Golse, F.; Pulvirenti, M., Kinetic equations and asymptotic theory, Series in Appl. Math., Gauthiers-Villars, Paris, 2000. MR 2065070 (2005d:82102)
  • 5. Bourgain, J.; Wang, W., Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 197-215 (1998). MR 1655515 (99m:35219)
  • 6. Choquet-Bruhat, Y.; Noutchegueme, N., Global solutions of the Yang-Mills-Vlasov system with zero rest mass, C. R. Acad. Sci. Paris Ser. I Math. 311 (1990), no. 12, 785-788. MR 1082633 (92g:58128)
  • 7. Cote, R., Construction of solutions to the subcritical gKdV equations with a given asymptotic behaviour, J. Funct. Anal. 241 (2006), no. 1, 143-211. MR 2264249 (2007h:35279)
  • 8. Dafermos, M., A note on the collapse of small data self-gravitating massless collisionless matter, J. Hyp. Diff. Eq. 3, 589-598. MR 2289606
  • 9. Dafermos, M.; Rendall, A., An extension principle for the Einstein-Vlasov system under spherical symmetry, Ann. Henri Poincare 6 (2005), 1137-1155. MR 2189379 (2007c:83011)
  • 10. Degond, P., Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Math. Methods Appl. Sci. 8 (1986), no. 4, 533-558. MR 870991 (88a:76054)
  • 11. DiPerna, R. J.; Lions, P.-L., Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), no. 6, 729-757. MR 1003433 (90i:35236)
  • 12. Dolbeault, J., Explosion à temps fini et évanescence en temps grand dans les équations cinétiques de la gravitation, unpublished manuscript.
  • 13. Fibich, G.; Merle, F.; Raphaël, P., Numerical proof of a spectral property related to the singularity formation for the $ L^2$ critical non linear Schrödinger equation, to appear in Physica D.
  • 14. Fridmann, A. M.; Polyachenko, V. L., Physics of gravitating systems, Springer-Verlag
  • 15. Frohlich, J.; Lenzman, E., Dynamical Collapse of White Dwarfs in Hartree- and Hartree-Fock Theory, preprint arXiv/math-ph/0608020.
  • 16. Frohlich, J.; Jonsson, L.; Lenzman, E., Boson Stars as Solitary Waves, to appear in Commun. Math. Phys., preprint arXiv/math-ph/0512040.
  • 17. Glassey, R., The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589 (97i:82070)
  • 18. Glassey, R.T.; Schaeffer, J., On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys. 101 (1985), no. 4, 459-473. MR 815195 (87c:35138)
  • 19. Glassey, R. T.; Schaeffer, J. W., Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys. 119 (1988), no. 3, 353-384. MR 969207 (90b:82042)
  • 20. Glassey, R. T.; Schaeffer, J., The relativistic Vlasov-Maxwell system in two space dimensions. I, II, Arch. Rational Mech. Anal. 141 (1998), no. 4, 331-354, 355-374. MR 1620506 (99d:82071)
  • 21. Glassey, R. T.; Schaeffer, J., On global symmetric solutions to the relativistic Vlasov-Poisson equation in three space dimensions, Math. Methods Appl. Sci. 24 (2001), no. 3, 143-157. MR 1810884 (2001m:82082)
  • 22. Glassey, R. T.; Strauss, W. A., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal. 92 (1986), no. 1, 59-90. MR 816621 (87j:82064)
  • 23. Guo, Y.; Rein, G., Isotropic steady states in galactic dynamics, Comm. Math. Phys. 219 (2001), 607-629. MR 1838751 (2002g:85001)
  • 24. Hadzic, M; Rein; G., Global existence and nonlinear stability for the relativistic Vlasov-Poisson system in the gravitational case, to appear in Indiana Univ. Math. J.
  • 25. Krieger, J., Schlag, W., Non-generic blow-up solutions for the critical focusing NLS in 1-d, preprint (2005).
  • 26. Lemou, M.; Méhats, F.; Raphaël, P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system, to appear in Arch. Rat. Mech. Anal.
  • 27. Lemou, M.; Méhats, F.; Raphaël, P., Structure of the linearized gravitational Vlasov-Poisson system close to a polytropic ground state, to appear in SIAM J. Math. Anal.
  • 28. Lemou, M.; Méhats, F.; Raphaël, P., Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
  • 29. Lieb, E.H.; Yau, H.T., The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), no. 1, 147-174. MR 904142 (89b:82014)
  • 30. Lions, P.-L.; Perthame, B., Propagation of moments and regularity for the $ 3$-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991), no. 2. MR 1115549 (92e:35160)
  • 31. Martin-Garcia, J.; Gundlach, C., Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system, Phys. Rev. D (3) 65 (2002), no. 8. MR 1899211 (2002m:83010)
  • 32. Merle, F.; Raphaël, P., Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math. 161 (2005), no. 1, 157-222. MR 2150386 (2006k:35277)
  • 33. Merle, F.; Raphaël, P., Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Ana 13 (2003), 591-642. MR 1995801 (2005j:35207)
  • 34. Merle, F.; Raphaël, P., On Universality of Blow up Profile for $ L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156, 565-672 (2004). MR 2061329 (2006a:35283)
  • 35. Merle, F.; Raphaël, P., On a sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37-90. MR 2169042 (2006j:35223)
  • 36. Merle, F.; Raphaël, P., Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2004), no. 3, 675-704. MR 2116733 (2006m:35346)
  • 37. Pfaffelmoser, K.; Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq. 95 (1992), 281-303. MR 1165424 (93d:35170)
  • 38. Planchon, F.; Raphaël, P., Existence and stability of the log-log blow up dynamics for the $ L^2$-critical nonlinear Schrödinger equation in a domain, to appear in Ann. Henri Poincare.
  • 39. Raphaël, P., Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann. 331 (2005), 577-609. MR 2122541 (2006b:35303)
  • 40. Raphaël, P., Existence and stability of a solution blowing up on a sphere for an $ L^2$ supercritical nonlinear Schrödinger equation, Duke Math. J. 134 no. 2 (2006), 199-258. MR 2248831
  • 41. Rein, G.; Rendall, A. D., Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Comm. Math. Phys. 150 (1992), no. 3, 561-583. MR 1204320 (94c:83028)
  • 42. Schaeffer, J., Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Part. Diff. Eq. 16 (1991), 1313-1335. MR 1132787 (92g:82113)
  • 43. Schaeffer, J., Steady States in Galactic Dynamics, Arch. Rational, Mech. Anal. 172 (2004), 1-19. MR 2048565 (2004m:35263)
  • 44. Van Kampen, N.G.; Felderhof, B.V., Theoretical methods in plasma physics, Amsterdam, North Holland, 1967.
  • 45. Weinstein, M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567--576. MR 691044 (84d:35140)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 82C70, 35Q55, 35Q75, 85A05, 74H35

Retrieve articles in all journals with MSC (2000): 82C70, 35Q55, 35Q75, 85A05, 74H35


Additional Information

Mohammed Lemou
Affiliation: CNRS and Université Paul Sabatier, MIP, 118, Route de Narbonne, 31062 Toulouse, France

Florian Méhats
Affiliation: IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Pierre Raphaël
Affiliation: CNRS and Université Paris-Sud, Orsay, France

DOI: https://doi.org/10.1090/S0894-0347-07-00579-6
Keywords: Vlasov-Poisson equations, relativistic gravitational kinetic equations, blow-up dynamics, virial law, modulation theory.
Received by editor(s): November 8, 2006
Published electronically: November 29, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society