Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Analytic projections, Corona problem and geometry of holomorphic vector bundles

Authors: Sergei Treil and Brett D. Wick
Journal: J. Amer. Math. Soc. 22 (2009), 55-76
MSC (2000): Primary 30D55; Secondary 46J15, 46J20
Published electronically: July 31, 2008
MathSciNet review: 2449054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of the paper is a theorem giving a sufficient condition for the existence of a bounded analytic projection onto a holomorphic family of generally infinite dimensional subspaces (a holomorphic sub-bundle of a trivial bundle). This sufficient condition is also necessary in the case of finite dimension or codimension of the bundle. A simple lemma of N. Nikolski connects the existence of a bounded analytic projection with the Operator Corona Problem (existence of a bounded analytic left inverse for an operator-valued function), so as corollaries of the main result we obtain new results about the Operator Corona Problem. In particular, we find a new sufficient condition, a complete solution in the case of finite codimension, and a solution of the generalized Corona Problem.

References [Enhancements On Off] (What's this?)

  • 1. M. Andersson, The corona theorem for matrices, Math. Z. $ \mathbf{201}$ (1989), 121-130. MR 990193 (90g:30036)
  • 2. M. Andersson, The $ H^{2}$ corona problem and $ \bar{\partial}_{b}$ in weakly pseudoconvex domains, Trans. Amer. Math. Soc. $ \mathbf{342}$ (1994), 241-255. MR 1145727 (94e:32033)
  • 3. S. L. Campbell and C. D. Meyer, Jr., Generalized inverses of linear transformations, Dover Publications Inc., New York, 1991. Corrected reprint of the 1979 original. MR 1105324 (92a:15003)
  • 4. L. Carleson, Interpolations by bounded analytic functions and the Corona problem, Ann. of Math. (2) $ \mathbf{76}$ (1962), 547-559. MR 0141789 (25:5186)
  • 5. J. Garnett, ``Bounded Analytic Functions,'' Academic Press, New York, 1981. MR 628971 (83g:30037)
  • 6. P. Lancaster and M. Tismenetsky, The theory of matrices, second ed., Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL, 1985. MR 792300 (87a:15001)
  • 7. N. K. Nikolski, Operators, functions, and systems: an easy reading.Vol. 1: Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002, translated from the French by Andreas Hartmann. MR 1864396 (2003i:47001a)
  • 8. -, Treatise on the shift operator, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986, Spectral function theory. With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, translated from the Russian by Jaak Peetre. MR 827223 (87i:47042)
  • 9. M. Rosenblum, A corona theorem for countably many functions, Integral Equations Operator Theory $ \mathbf{3}$ (1980), no. 1, 125-137. MR 570865 (81e:46034)
  • 10. V. A. Tolokonnikov, Estimates in the Carleson corona theorem, ideals of the algebra $ H^{\infty}$, a problem of Sz.-Nagy, Zap. Nauchn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) $ \mathbf{113}$ (1981), 178-198, 267. Investigations on linear operators and the theory of functions, XI. MR 629839 (83d:46065)
  • 11. T. T. Trent, A new estimate for the vector valued corona problem, Journal of Functional Analysis $ \mathbf{189}$ (2002) 267-282. MR 1887635 (2002m:30067)
  • 12. S. R. Treil, Angles between co-invariant subspaces, and the operator corona problem. The Szőkefalvi-Nagy problem, Dokl. Akad. Nauk SSSR 302 (1988), no. 5, 1063-1068. MR 981054 (90b:47057)
  • 13. -, Geometric methods in spectral theory of vector-valued functions: some recent results, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel, 1989, pp. 209-280. MR 1030053 (91j:47036)
  • 14. -, Unconditional bases of invariant subspaces of a contraction with finite defects, Indiana Univ. Math. J. 46 (1997), no. 4, 1021-1054. MR 1631552 (99g:47018)
  • 15. -, An operator Corona theorem, Indiana University Mathematical Journal 53 (2004), no. 6, 1765-1784. MR 2106344 (2005j:30067)
  • 16. -, Lower bounds in the matrix Corona theorem and the codimension one conjecture, Geometric and Functional Analysis 14 (2004), 1118-1133. MR 2105955 (2005i:30090)
  • 17. S. Treil, A. Volberg, A fixed point approach to Nehari's problem and its applications, Oper. Theory Adv. Appl. 71 (1994), 165-186. MR 1300219 (95i:47026)
  • 18. S. Treil, B. D. Wick, The matrix-valued $ H^{p}$ corona problem in the disk and polydisk, J. Funct. Anal. 226 (2005), no. 1, 138-172. MR 2158178 (2006g:32010)
  • 19. A. Uchiyama, Corona theorems for countably many functions and estimates for their solutions, preprint, UCLA, 1980.
  • 20. N. Th. Varopoulos, BMO functions and the $ \bar{\partial}$-equation, Pacific J. Math. $ \mathbf{71}$ (1977), 221-273. MR 0508035 (58:22639a)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 30D55, 46J15, 46J20

Retrieve articles in all journals with MSC (2000): 30D55, 46J15, 46J20

Additional Information

Sergei Treil
Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Box 1917, Providence, Rhode Island 02912

Brett D. Wick
Affiliation: Department of Mathematics, University of South Carolina, LeConte College, 1523 Greene Street, Columbia, South Carolina 29208

Keywords: Corona Theorem, analytic projections, Nikolski's lemma
Received by editor(s): January 14, 2006
Published electronically: July 31, 2008
Additional Notes: The work of the first author was supported by the National Science Foundation under Grant DMS-0501065
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society